Skip to main content

Lessons from Rodent Models for Genetic and Age-Related Hearing Loss

  • Chapter
  • First Online:
Book cover Rodent Bioacoustics

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 67))

  • 725 Accesses

Abstract

This chapter compares the six most heavily studied rodent models with regard to hearing-in-aging and the availability of mutant lines that recapitulate human genetic hearing loss. Four of the six models are available only as outbreds, and much of that work has been based on genetically nonstandard animals of unclear origin. Some of these (guinea pigs and chinchillas) may no longer resemble their wild counterparts. Some results from outbred models may not be reproducible, since it may be impossible for experimenters to know if they are testing the same genetic models. Likewise, engineered or induced mutations onto outbred lines may not be productive because characterization can be confounded by variable and unknown modifier genes. Naturally arising coat color-related mutations may influence hearing through an absence of melanin or melanocytes. These lines may not be commercially available, however. Hamsters are not well described with respect to detailed hearing or aging studies. Gerbils, guinea pigs, and chinchillas are well explored both as general hearing models and as aging models. Inbred mice and rats have become the primary models for most research over the last 20 years. Inbred models offer a high degree of genetic standardization and reproducibility of results. Their short lifespans and the availability of lines with progressive hearing loss have made mice and rats popular for aging research. They also foster transgenic methods and gene discovery, but mice and rats may not be optimal for studies that require low-frequency hearing or readily accessible inner ear fluid spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, M., Bohne, B. A., & Harding, G. W. (2003). An in vivo tracer study of noise-induced damage to the reticular lamina. Hearing Research, 175, 82–100.

    Article  PubMed  Google Scholar 

  • Alizadeh, A., Hong, L. Z., Kaelin, C. B., Raudsepp, T., et al. (2009). Genetics of sex-linked yellow in the Syrian hamster. Genetics, 181, 1427–1436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allen, P. D., & Eddins, D. A. (2010). Presbycusis phenotypes form a heterogeneous continuum when ordered by degree and configuration of hearing loss. Hearing Research, 264, 10–20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Amedofu, G. K., Gopal, K. V., Asher, Jr., J. H., Ahmadizadeh, M., & Moore, E. J. (1999). Auditory brainstem responses in golden Syrian hamsters (Mesocricetus auratus) affected with the Wh gene. Comparative Medicine, 49, 173–178.

    CAS  Google Scholar 

  • Bielefeld, E., Coling, D. E., Chen, G.-D., Li, M., et al. (2008). Age-related hearing loss in the Fischer 344/NHsd rat substrain. Hearing Research, 241, 26–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bohne, B. A. (1972). Location of small cochlear lesions by phase contrast microscopy prior to thin sectioning. The Laryngoscope, 82, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Bohne, B. A., Gruner, M. M., & Harding, G. W. (1990). Morphological correlates of aging in the chinchilla cochlea. Hearing Research, 48, 79–91.

    Article  PubMed  CAS  Google Scholar 

  • Bourien, J., Tang, Y., Batrel, C., Huet, A., et al. (2014). Contribution of auditory nerve fibers to compound action potential of the auditory nerve. Journal of Neurophysiology, 112, 1025–1039.

    Article  PubMed  CAS  Google Scholar 

  • Bowl, M. R., & Dawson, S. J. (2015). The mouse as a model for age-related hearing loss—a mini-review. Gerontology, 61, 149–157.

    Article  PubMed  Google Scholar 

  • Buckiova, D., Popelar, J., & Syka, J. (2007). Aging cochleas in the F344 rat: Morphological and functional changes. Experimental Gerontology, 42, 629–638.

    Article  PubMed  CAS  Google Scholar 

  • Cable, J., Jackson, I. J., & Steel, K. P. (1993). Light (Blt), a mutation that causes melanocyte death, affects stria vascularis function in the mouse inner ear. Pigment Cell Research, 6, 215–225.

    Article  PubMed  CAS  Google Scholar 

  • Chen, G. D., Li, M., Tanaka, C., Bielefeld, E. C., et al. (2009). Aging outer hair cells (OHCs) in the Fischer 344 rat cochlea: Function and morphology. Hearing Research, 248, 39–47.

    Article  PubMed  Google Scholar 

  • Clark, W. W., Clark, C. S., Moody, D. B., & Stebbins, W. C. (1974). Noise-induced hearing loss in the chinchilla as determined by a positive-reinforcement technique. The Journal of the Acoustical Society of America, 56, 1202–1209.

    Article  PubMed  CAS  Google Scholar 

  • Clark, W. W., Bohne, B. A., & Boettcher, F. A. (1987). Effect of periodic rest on hearing loss and cochlear damage following exposure to noise. The Journal of the Acoustical Society of America, 82, 1253–1263.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, J. W. (1976). Hair cell loss as a function of age in the normal cochlea of the guinea pig. Acta Otolaryngologica, 82, 33–40.

    Article  CAS  Google Scholar 

  • Conlee, J. W., Abdul-Baqi, K. J., McCandless, G. A., & Creel, D. J. (1986). Differential susceptibility to noise-induced permanent threshold shift between albino and pigmented guinea pigs. Hearing Research, 23, 81–91.

    Article  PubMed  CAS  Google Scholar 

  • Conlee, J. W., Abdul-Baqi, K. J., McCandless, G. A., & Creel, D. J. (1988). Effects of aging on normal hearing loss and noise-induced threshold shift in albino and pigmented guinea pigs. Acta Otolaryngologica, 106, 64–70.

    Article  CAS  Google Scholar 

  • Cooper, N. P., & Yates, G. K. (1994). Nonlinear input-output functions derived from the responses of guinea-pig cochlear nerve fibres: Variations with characteristic frequency. Hearing Research, 78, 221–234.

    Article  PubMed  CAS  Google Scholar 

  • Covell, W. P., & Rogers, J. B. (1957). Pathologic changes in the inner ear of senile guinea pigs. Laryngoscope, 67, 118–129.

    Article  PubMed  CAS  Google Scholar 

  • Dallos, P., & Cheatham, M. A. (1992). Cochlear hair cell function reflected in intracellular recordings in vivo. Society of General Physiologists, Series 47, 371–393.

    Google Scholar 

  • Dawes, P., & Payton, A. (2016). Genetics of age-related hearing loss. In B. Vona & T. Haaf (Eds.), Genetics of deafness (pp. 84–96). New York: Karger.

    Chapter  Google Scholar 

  • Eggermont, J. J., & Roberts, L. E. (2015). Tinnitus: Animal models and findings in humans. Cell and Tissue Research, 36, 311–336.

    Article  Google Scholar 

  • Ernstson, S. (1971). Cochlear morphology in a strain of the waltzing guinea pig. Acta Otolaryngologica, 71, 469–482.

    Article  CAS  Google Scholar 

  • Faddis, B. T., & McGinn, M. D. (1997). Spongiform degeneration of the gerbil cochlear nucleus: An ultrastructural and immunohistochemical evaluation. Journal of Neurocytology, 26, 625–635.

    Article  PubMed  CAS  Google Scholar 

  • Festing, M. F. (1976). The guinea pig. In Universities Federation for Animal Welfare Handbook on the Care and Management of Laboratory Animals (pp. 229–247). Edinburgh: Churchill Livingstone.

    Google Scholar 

  • Festing, M. F. (2010). Inbred strains should replace outbred stocks in toxicology, safety testing, and drug development. Toxicological Pathology, 38, 681–690.

    Article  CAS  Google Scholar 

  • Fournier, P., & Hébert, S. (2013). Gap detection deficits in humans with tinnitus as assessed with the acoustic startle paradigm: Does tinnitus fill in the gap? Hearing Research, 295, 16–23.

    Article  PubMed  Google Scholar 

  • Fransen, E., Lemkens, N., Van Laer, L., & Van Camp, G. (2003). Age-related hearing impairment (ARHI): Environmental risk factors and genetic prospects. Experimental Gerontology, 38, 353–359.

    Article  PubMed  Google Scholar 

  • Fransen, E., Bonneux, S., Corneveaux, J. J., Schrauwen, I., et al. (2015). Genome-wide association analysis demonstrates the highly polygenic character of age-related hearing impairment. European Journal of Human Genetics, 23, 110–115.

    Article  PubMed  CAS  Google Scholar 

  • French, A. S. (1992). Mechanotransduction. Annual Review of Physiology, 54, 135–152.

    Article  PubMed  CAS  Google Scholar 

  • Furman, A. C., Kujawa, S. G., & Liberman, M. C. (2013). Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. Journal of Neurophysiology, 110, 577–586.

    Article  PubMed  PubMed Central  Google Scholar 

  • Galazyuk, A., & Hébert, S. (2015). Gap-prepulse inhibition of the acoustic startle reflex (GPIAS) for tinnitus assessment: Current status and future directions. Frontiers in Neurology, 6. https://doi.org/10.3389/fneur.2015.00088

  • Gratton, M. A., & Schulte, B. A. (1995). Alterations in microvasculature are associated with atrophy of the stria vascularis in quiet-aged gerbils. Hearing Research, 82, 44–52.

    Article  PubMed  CAS  Google Scholar 

  • Hamernik, R. P., Patterson, J. H., Turrentine, G. A., & Ahroon, W. A. (1989). The quantitative relation between sensory cell loss and hearing thresholds. Hearing Research, 38, 199–212.

    Article  PubMed  CAS  Google Scholar 

  • Heffner, H., & Masterton, B. (1980). Hearing in glires: Domestic rabbit, cotton rat, feral house mouse, and kangaroo rat. The Journal of the Acoustical Society of America, 68, 1584–1599.

    Article  Google Scholar 

  • Hirose, K., & Liberman, M. C. (2003). Lateral wall histopathology and endocochlear potential in the noise-damaged mouse cochlea. Journal of the Association for Research in Otolaryngology, 4, 339–352.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jagger, D. J., Nevill, G., & Forge, A. (2010). The membrane properties of cochlear root cells are consistent with roles in potassium recirculation and spatial buffering. Journal of the Association for Research in Otolaryngology, 11, 435–448.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin, Z., Mannström, P., Skjönsberg, Å., Järlebark, L., & Ulfendahl, M. (2006). Auditory function and cochlear morphology in the German waltzing guinea pig. Hearing Research, 219, 74–84.

    Article  PubMed  Google Scholar 

  • Jin, Z., Mannström, P., Järlebark, L., & Ulfendahl, M. (2007). Malformation of stria vascularis in the developing inner ear of the German waltzing guinea pig. Cell and Tissue Research, 328, 257–270.

    Article  PubMed  Google Scholar 

  • Johnson, K. R., Erway, L. C., Cook, S. A., Willott, J. F., & Zheng, Q. Y. (1997). A major gene affecting age-related hearing loss in C57BL/6J mice. Hearing Research, 114, 83–92.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K. R., Zheng, Q. Y., & Erway, L. C. (2000). A major gene affecting age-related hearing loss is common to at least 10 inbred strains of mice. Genomics, 70, 171–180.

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi, S., Hultcrantz, M., Jin, Z., Ulfendahl, M., & Suzuki, M. (2010). Vestibular morphology in the German waltzing guinea pig. Journal of Otolaryngology--Head & Neck Surgery, 39(2), 115–121.

    Google Scholar 

  • Ketten, D. R. (1992). The marine mammal ear: Specializations for aquatic audition and echolocation. In D. B. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 717–750). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Khimich, D., Nouvian, R., Pujol, R., tom Dieck, S., et al. (2005). Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature, 434, 889–894.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H. J., & Chole, R. A. (1998). Experimental models of aural cholesteatomas in Mongolian gerbils. Annals of Otology, Rhinology & Laryngology, 107, 129–134.

    Article  CAS  Google Scholar 

  • Kobayashi, T., Aslan, A., Chiba, T., Takasaka, T., & Sanna, M. (1996). Measurement of endocochlear DC potentials in ears with acoustic neuromas: A preliminary report. Acta Oto-Laryngologica, 116, 791–795.

    Article  PubMed  CAS  Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2006). Acceleration of age-related hearing loss by early noise: Evidence of a misspent youth. The Journal of Neuroscience, 26, 2115–2123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: Cochlear nerve degeneration after 'temporary' noise-induced hearing loss. The Journal of Neuroscience, 29, 14077–14085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kujoth, G. C., Hiona, A., Pugh, T. D., Someya, S., et al. (2005). Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science, 309, 481–484.

    Article  PubMed  CAS  Google Scholar 

  • Lang, H., Schulte, B. A., Zhou, D., Smythe, N., et al. (2006). Nuclear factor κB deficiency is associated with auditory nerve degeneration and increased noise-induced hearing loss. The Journal of Neuroscience, 26, 3541–3550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, R. J., Hong, J. S., McGinty, J. F., & Lomax, P. (1987). Increased enkephalin and dynorphin immunoreactivity in the hippocampus of seizure sensitive Mongolian gerbils. Brain Research, 401, 353–358.

    Article  PubMed  CAS  Google Scholar 

  • Lobarinas, E., Salvi, R., & Ding, D. (2013a). Insensitivity of the audiogram to carboplatin induced inner hair cell loss in chinchillas. Hearing Research, 302, 113–120.

    Article  PubMed  CAS  Google Scholar 

  • Lobarinas, E., Hayes, S. H., & Allman, B. L. (2013b). The gap-startle paradigm for tinnitus screening in animal models: Limitations and optimization. Hearing Research, 295, 150–160.

    Article  PubMed  Google Scholar 

  • Long, G. R., & Clark, W. W. (1984). Detection of frequency and rate modulations by the chinchilla. The Journal of the Acoustical Society of America, 75, 1184–1190.

    Article  PubMed  CAS  Google Scholar 

  • Longenecker, R. J., & Galazyuk, A. V. (2011). Development of tinnitus in CBA/CaJ mice following sound exposure. Journal of the Association for Research in Otolaryngology, 12, 647–658.

    Article  PubMed  PubMed Central  Google Scholar 

  • Makary, C. A., Shin, S., Kujawa, S. G., Liberman, M. C., & Merchant, S. N. (2011). Age-related primary cochear neuronal degeneration in human temporal bones. Journal of the Association for Research in Otolaryngology, 12, 711–717.

    Article  PubMed  PubMed Central  Google Scholar 

  • Masterton, B., Heffner, H., & Ravizza, R. (1969). The evolution of human hearing. The Journal of the Acoustical Society of America, 45, 966–985.

    Article  PubMed  CAS  Google Scholar 

  • McFadden, S. L., Quaranta, N., & Henderson, D. (1997). Suprathreshold measures of auditory function in the aging chinchilla. Hearing Research, 111, 127–135.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. D. (1970). Audibility curve of the chinchilla. The Journal of the Acoustical Society of America, 48, 513–523.

    Article  PubMed  CAS  Google Scholar 

  • Moser, T., & Starr, A. (2016). Auditory neuropathy—neural and synaptic mechanisms. Nature Reviews Neurology, 12, 135–149.

    Article  PubMed  CAS  Google Scholar 

  • Naito, R., Murofushi, T., Mizutani, M., & Kaga, K. (1999). Auditory brainstem responses, electrocochleograms, and cochlear microphonics in the myelin deficient mutant hamster ‘bt’. Hearing Research, 136, 44–48.

    Article  PubMed  CAS  Google Scholar 

  • Ohlemiller, K. K. (2006). Contributions of mouse models to understanding of age- and noise-related hearing loss. Brain Research, 1091, 89–102.

    Article  PubMed  CAS  Google Scholar 

  • Ohlemiller, K. K. (2009). Mechanisms and genes in human strial presbycusis from animal models. Brain Research, 1277, 70–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohlemiller, K. K. (2012). Current issues in noise exposure. In K. L. Tremblay & R. F. Burkard (Eds.), Translational perspectives in auditory neuroscience. Vol. 3 (pp. 1–34). San Diego: Plural Publishing.

    Google Scholar 

  • Ohlemiller, K. K. (2015). A question of balance: Free radicals in inner ear homeostasis. In J. Miller & C. G. Le Prell (Eds.), Free radicals in ENT medicine (pp. 21–55). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Ohlemiller, K. K., & Frisina, R. D. (2008). Age-related hearing loss and its cellular and molecular bases. In J. Schacht, A. N. Popper, & R. R. Fay (Eds.), Auditory trauma, protection, and repair (pp. 145–194). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Ohlemiller, K. K., & Siegel, J. H. (1992). Effects of cooling on gross cochlear potentials in the gerbil: Basal and apical differences. Hearing Research, 63, 79–89.

    Article  PubMed  CAS  Google Scholar 

  • Ohlemiller, K. K., & Siegel, J. H. (1994). Cochlear basal and apical differences reflected in the effects of cooling on responses of single auditory nerve fibers. Hearing Research, 80, 174–190.

    Article  PubMed  CAS  Google Scholar 

  • Ohlemiller, K. K., Lett, J. M., & Gagnon, P. M. (2006). Cellular correlates of age-related endocochlear potential reduction in a mouse model. Hearing Research, 220, 10–26.

    Article  PubMed  Google Scholar 

  • Ohlemiller, K. K., Rice, M. R., Lett, J. M., & Gagnon, P. M. (2009). Absence of strial melanin coincides with age-associated marginal cell loss and endocochlear potential decline. Hearing Research, 249, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Ohlemiller, K. K., Dahl, A. R., & Gagnon, P. M. (2010). Divergent aging characteristics in CBA/J and CBA/CaJ mouse cochleae. Journal of the Association for Research in Otolaryngology, 11, 605–623.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohlemiller, K. K., Rosen, A. R., Rellinger, E. A., Montgomery, S.C, & Gagnon, P. M. (2011). Different cellular and genetic basis of noise-related endocochlear potential reduction in CBA/J and BALB/cJ mice. Journal of the Association for Research in Otolaryngology, 12, 45–58.

    Article  PubMed  Google Scholar 

  • Ohlemiller, K. K., Jones, S. M., & Johnson, K. R. (2016). Application of mouse models to research in hearing and balance. Journal of the Association for Research in Otolaryngology, 17, 1–31.

    Article  Google Scholar 

  • Parker, C. C., & Palmer, A. A. (2011). Dark matter: Are mice the solution to missing heritability? Froniters in Genetics, 2, 32. https://doi.org/10.3389/fgene.2011.00032

  • Patuzzi, R. (2011). Ion flow in cochlear hair cells and the regulation of hearing sensitivity. Hearing Research, 280, 3–20.

    Article  PubMed  CAS  Google Scholar 

  • Petkov, P. M., Ding, Y., Cassell, M. A., Zhang, W., et al. (2004). An efficient SNP system for mouse genome scanning and elucidating strain relationships. Genome Research, 14, 1806–1811.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pollak, G. D. (1992). Adaptations of basic structures and mechanisms in the cochlea and central auditory pathway of the mustache bat. In D. B. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 751–778). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Pritt, S., Hargaden, M., Singer, L., Smith, G. D., et al. (2012). The laboratory rabbit, guinea pig, hamster, and other rodents. San Diego: Academic Press.

    Google Scholar 

  • Prosen, C. A., Moody, D. B., Stebbins, W. C., Smith, D. W., et al. (1990). Apical hair cells and hearing. Hearing Research, 44, 179–193.

    Article  PubMed  CAS  Google Scholar 

  • Provenzano, M. J., & Domann, F. E. (2007). A role for epigenetics in hearing: Establishment and maintenance of auditory specific gene expression patterns. Hearing Research, 233, 1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravicz, M. E., & Rosowski, J. J. (1997). Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus: III. Effect of variations in middle-ear volume. The Journal of the Acoustical Society of America, 101, 2135–2147.

    Article  PubMed  CAS  Google Scholar 

  • Rosowski, J. J. (1992). Hearing in transitional mammals: Predictions from the middle-ear anatomy and hearing capabilities of extant mammals. In D. B. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 615–631). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Ruggero, M. A., & Rich, N. C. (1983). Chinchilla auditory-nerve responses to low-frequency tones. The Journal of the Acoustical Society of America, 73, 2096–2108.

    Article  PubMed  CAS  Google Scholar 

  • Russell, I. J., & Sellick, P. M. (1978). Intracellular studies of hair cells in the mammalian cochlea. Journal of Physiology, 284, 261–289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryan, A. (1976). Hearing sensitivity of the mongolian gerbil, Meriones unguiculatis. The Journal of the Acoustical Society of America, 59, 1222–1226.

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Benito, D., Gómez-Nieto, R., Hernández-Noriega, S., Murashima, A. A. B., et al. (2017). Morphofunctional alterations in the olivocochlear efferent system of the genetic audiogenic seizure-prone hamster GASH: Sal. Epilepsy & Behavior, 71, 193–206.

    Article  Google Scholar 

  • Schmiedt, R. A. (2010). The physiology of cochlear presbycusis. In S. Gordon-Salant, R. D. Frisina, A. N. Popper, & R. R. Fay (Eds.), The aging auditory system (pp. 9–38). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Schmiedt, R. A., & Zwislocki, J. J. (1977). Comparison of sound-transmission and cochlear-microphonic characteristics in Mongolian gerbil and guinea pig. The Journal of the Acoustical Society of America, 61, 133–149.

    Article  PubMed  CAS  Google Scholar 

  • Schmiedt, R. A., Zwislocki, J. J., & Hamernik, R. P. (1980). Effects of hair cell lesions on responses of cochlear nerve fibers. I. Lesions, tuning curves, two-tone inhibition, and responses to trapezoidal wave patterns. Journal of Neurophysiology, 43, 1367–1389.

    Article  PubMed  CAS  Google Scholar 

  • Schuknecht, H. F. (1964). Further observations on the pathology of presbycusis. Archives of Otolaryngology, 80, 369–382.

    Article  PubMed  CAS  Google Scholar 

  • Schuknecht, H. F. (1993). Pathology of the ear. 2nd ed. Philadelphia: Lea and Febiger.

    Google Scholar 

  • Schuknecht, H. F., & Gacek, M. R. (1993). Cochlear pathology in presbycusis. Annals of Otology, Rhinology and Laryngology, 102, 1–16.

    Article  CAS  Google Scholar 

  • Schulte, B. A., & Schmiedt, R. A. (1992). Lateral wall Na, K-ATPase and endodochlear potentials decline with age in quiet-reared gerbils. Hearing Research, 61, 35–46.

    Article  PubMed  CAS  Google Scholar 

  • Senthilan, P. R., Piepenbrock, D., Ovezmyradov, G., Nadrowski, B., et al. (2012). Drosophila auditory organ genes and genetic hearing defects. Cell, 150, 1042–1054.

    Article  PubMed  CAS  Google Scholar 

  • Sewell, W. (1984). The effects of furosemide on the endocochlear potential and auditory nerve fiber tuning curves in cats. Hearing Research, 14, 305–314.

    Article  PubMed  CAS  Google Scholar 

  • Shimoyama, M., Smith, J. R., De Pons, J., Tutaj, M., et al. (2016). The chinchilla research resource database: Resource for an otolaryngology disease model. Database: The Journal of Biological Databases and Curation, 2016. https://academic.oup.com/database/article/doi/10.1093/database/baw073/2630430

  • Silver, L. M. (1995). Mouse genetics. Oxford, UK: Oxford Press.

    Google Scholar 

  • Skjönsberg, Å., & Mannström, P. (2015). Reduced noise susceptibility in littermate offspring from heterozygous animals of the German waltzing guinea pig. Neuroreport, 26, 593–597.

    Article  PubMed  Google Scholar 

  • Skjönsberg, Å., Duan, M., Johnson, A. C., & Ulfendahl, M. (2014). Effect of auditory stress agents on heterozygous German waltzing guinea pigs. Journal of Otology, 9, 179–190.

    Article  Google Scholar 

  • Slepecky, N. B. (1996). Structure of the mammalian cochlea. In P. Dallos, A. N. Popper, & R. D. Fay (Eds.), The cochlea (pp. 44–129). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Spicer, S. S., & Schulte, B. A. (2005). Pathologic changes of presbycusis begin in secondary processes and spread to primary processes of strial marginal cells. Hearing Research, 205, 225–240.

    Article  PubMed  Google Scholar 

  • Stamper, G. C., & Johnson, T. A. (2015). Auditory function in normal-hearing, noise-exposed human ears. Ear and Hearing, 36, 172.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steel, K. P. (1995). Inherited hearing defects in mice. Annual Review of Genetics, 29, 675–701.

    Article  PubMed  CAS  Google Scholar 

  • Steel, K. P. (2014). What’s the use of genetics? Perspectives on Auditory Research (pp. 569–584). New York: Springer Science+Business Media.

    Google Scholar 

  • Steel, K. P., & Brown, S. D. M. (1994). Genes and deafness. Trends in Genetics, 10, 428–435.

    Article  PubMed  CAS  Google Scholar 

  • Taberner, A. M., & Liberman, M. C. (2005). Response properties of single auditory nerve fibers in the mouse. Journal of Neurophysiology, 93, 557–569.

    Article  PubMed  Google Scholar 

  • Tarnowski, B. I., Schmiedt, R. A., Hellstrom, L. I., Lee, F. S., & Adams, J. C. (1991). Age-related changes in cochleas of mongolian gerbils. Hearing Research, 54, 123–134.

    Article  PubMed  CAS  Google Scholar 

  • Tran Ba Huy, P., Ferrary, E., & Roinel, N. (1989). Electrochemical and clinical observations in 11 cases of Meniere's disease. In J. B. Nadol (Ed.), Meniere's disease (pp. 241–246). Amsterdam: Kugler and Ghedini.

    Google Scholar 

  • Turner, J., Larsen, D., Hughes, L., Moechars, D., & Shore, S. (2012). Time course of tinnitus development following noise exposure in mice. Journal of Neuroscience Research, 90, 1480–1488.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ukaji, T., Iwasa, M. A., & Kai, O. (2016). Tyrosinase (Tyr) gene mutation in albino Mongolian gerbil (Meriones unguiculatus). Open Journal of Animal Sciences, 6, 259. https://doi.org/10.4236/ojas.2016.64031

    Article  CAS  Google Scholar 

  • Wang, Y., Hirose, K., & Liberman, M. C. (2002). Dynamics of noise-induced cellular injury and repair in the mouse cochlea. Journal of the Association for Research in Otolaryngology, 3, 248–268.

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitfield, T. T. (2002). Zebrafish as a model for hearing and deafness. Journal of Neurobiology, 53, 157–171.

    Article  PubMed  Google Scholar 

  • Willott, J. F. (1983). Introduction: Mus musculus. In J. F. Williot (Ed.), Auditory psychobiology of the mouse (pp. 3–12). Springfield, IL: Charles C. Thomas.

    Google Scholar 

  • Willott, J. F. (Ed.). (2001). Handbook of mouse auditory research: From behavior to molecular biology. New York, NY: CRC Press.

    Google Scholar 

  • Winter, I. M., Robertson, D., & Yates, G. K. (1990). Diversity of characteristic frequency rate intensity functions in guinea pig auditory nerve fibers. Hearing Research, 45, 191–202.

    Article  PubMed  CAS  Google Scholar 

  • Yalcin, B., & Flint, J. (2012). Association studies in outbred mice in a new era of full-genome sequencing. Mammalian Genome, 23, 719–726.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou, B., Mittal, R., Grati, M. H., Lu, Z., et al. (2015). The application of genome editing in studying hearing loss. Hearing Research, 327, 102–108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin K. Ohlemiller .

Editor information

Editors and Affiliations

Ethics declarations

Kevin Ohlemiller declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ohlemiller, K.K. (2018). Lessons from Rodent Models for Genetic and Age-Related Hearing Loss. In: Dent, M., Fay, R., Popper, A. (eds) Rodent Bioacoustics. Springer Handbook of Auditory Research, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-319-92495-3_7

Download citation

Publish with us

Policies and ethics