Skip to main content

Coral Food, Feeding, Nutrition, and Secretion: A Review

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 65))

Abstract

Tropical scleractinian corals are dependent to varying degrees on their photosymbiotic partners. Under normal levels of temperature and irradiance, they can provide most, but not all, of the host’s nutritional requirements. Heterotrophy is required to adequately supply critical nutrients, especially nitrogen and phosphorus. Scleractinian corals are known as mesozooplankton predators, and most employ tentacle capture. The ability to trap nano- and picoplankton has been demonstrated by several coral species and appears to fulfill a substantial proportion of their daily metabolic requirements. The mechanism of capture likely involves mucociliary activity or extracoelenteric digestion, but the relative contribution of these avenues have not been evaluated. Many corals employ mesenterial filaments to procure food in various forms, but the functional morphology and chemical activities of these structures have been poorly documented. Corals are capable of acquiring nutrition from particulate and dissolved organic matter, although the degree of reliance on these sources generally has not been established. Corals, including tropical, deep- and cold-water species, are known as a major source of carbon and other nutrients for benthic communities through the secretion of mucus, despite wide variation in chemical composition. Mucus is cycled through the planktonic microbial loop, the benthos, and the microbial community within the sediments. The consensus indicates that the dissolved organic fraction of mucus usually exceeds the insoluble portion, and both serve as sources for the growth of nano- and picoplankton. As many corals employ mucus to trap food, a portion is taken back during feeding. The net gain or loss has not been evaluated, although production is generally thought to exceed consumption. The same is true for the net uptake and loss of dissolved organic matter by mucus secretion. Octocorals are thought not to employ mucus capture or mesenterial filaments during feeding and generally rely on tentacular filtration of weakly swimming mesozooplankton, particulates, dissolved organic matter, and picoplankton. Nonsymbiotic species in the tropics favor phytoplankton and weakly swimming zooplankton. Azooxanthellate soft corals are opportunistic feeders and shift their diet according to the season from phyto- and nanoplankton in summer to primarily particulate organic matter (POM) in winter. Cold-water species favor POM, phytodetritus, microplankton, and larger zooplankton when available. Antipatharians apparently feed on mesozooplankton but also use mucus nets, possibly for capture of POM. Feeding modes in this group are poorly known.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ainsworth TD, Thurber RV, Gates RD (2010) The future of coral reefs: a microbial perspective. Trends Ecol Evol 25:233–240

    Article  PubMed  Google Scholar 

  • Alldredge A, Carlson C, Carpenter R (2013) Sources of organic carbon to coral reef flats. Oceanography 26:108–113

    Article  Google Scholar 

  • Allers E, Niesner C, Wild C, Pernthaler J (2008) Microbes enriched in seawater after addition of coral mucus. Appl Environ Microbiol 74:3274–3278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al-Moghrabi S, Allemand D, Couret JM, Jaubert J (1995) Fatty acids of the scleractinian coral Galaxea fascicularis: effect of light and feeding. J Comp Physiol B 165:183–192

    Article  Google Scholar 

  • Anthony KRN (1999) Coral suspension feeding on fine particulate matter. J Exp Mar Biol Ecol 232:85–106

    Article  Google Scholar 

  • Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252:221–253

    Article  PubMed  CAS  Google Scholar 

  • Aylward FO, Boeuf D, Mende DR et al (2017) Diel cycling and long-term persistence of viruses in the ocean’s euphotic zone. Proc Natl Acad Sci USA 114:11446–11451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–792

    Article  PubMed  CAS  Google Scholar 

  • Azam F, Fenchel T, Field JG et al (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Bachar A, Achituv Y, Pasternak Z, Dubinsky Z (2007) Autotrophy versus heterotrophy: the origin of carbon determines its fate in a symbiotic sea anemone. J Exp Mar Biol Ecol 349:295–298

    Article  CAS  Google Scholar 

  • Bak RPM, Joenje M, de Jong I et al (1998) Bacterial suspension feeding by coral reef benthic organisms. Mar Ecol Prog Ser 175:285–288

    Article  Google Scholar 

  • Baker DM, Freeman CJ, Wong JCY et al (2018) Climate change promotes parasitism in a coral symbiosis. ISME J 12(3):921–930. https://doi.org/10.1038/s41396-018-0046-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bathmann UV, Scharek R, Klass C et al (1997) Spring development of phytoplankton biomass and composition in major water masses of the Atlantic sector of the Southern Ocean. Deep-Sea Res 44:51–57

    CAS  Google Scholar 

  • Battey JF, Patton JS (1984) A reevaluation of the role of glycerol in carbon translocation in zooxanthellae-coelenterate symbiosis. Mar Biol 79:27–38

    Article  CAS  Google Scholar 

  • Baumann J, Grotolli AG, Hughes AD, Matsui Y (2014) Photoautotrophic and heterotrophic carbon in bleached and non-bleached coral lipid acquisition and storage. J Exp Mar Biol Ecol 461:469–478

    Article  CAS  Google Scholar 

  • Bednarz VN, Naumann MS, Niggl W, Wild C (2012) Inorganic nutrient availability affects organic matter fluxes and metabolic activity in the soft coral genus Xenia. J Exp Biol 215:3672–3679

    Article  PubMed  CAS  Google Scholar 

  • Bednarz VN, Grover R, Maguer J-F et al (2017) The assimilation of diazotroph-derived nitrogen by scleractinian corals depends on their metabolic status. MBio 8(1):e02058-16 http://mbio.asm.org/content/8/1/e02058-16.full

    Article  PubMed  PubMed Central  Google Scholar 

  • Benavides M, Houlbrèque F, Camps M et al (2016) Diazotrophs: a non-negligible source of nitrogen for the tropical coral Stylophora pistillata. J Exp Biol 219:2608–2612

    Article  PubMed  Google Scholar 

  • Benavides M, Bednarz VN, Ferrier-Pagès C (2017) Diazotrophs: overlooked key players within the coral symbiosis and tropical reef ecosystems? Front Mar Sci 4(10). https://doi.org/10.3389/fmars.2017.00010

  • Benson AA, Muscatine L (1974) Wax in coral mucus: energy transfer from corals to reef fishes. Limnol Oceanogr 19:810–814

    Article  Google Scholar 

  • Bessell-Brown P, Fisher R, Duckworth A, Jones R (2017) Mucous sheet production in Porites: and effective bioindicator of sediment-related pressures. Ecol Indicators 77:276–285

    Article  Google Scholar 

  • Bo M, Tazoli S, Spano BG (2008) Antipathella subpinnata (Antipatharia, Myriopathidae) in Italian seas. Ital J Zool 75:185–195

    Article  Google Scholar 

  • Boschma H (1925) On the feeding reactions and digestion in the coral polyp Astrangia danæ, with notes on its symbiosis with zoöxanthellæ. Biol Bull 49:407–439

    Article  CAS  Google Scholar 

  • Bourne DG, Garren M, Work TM et al (2009) Microbial disease and the coral holobiont. Trends Microbiol 17:554–562

    Article  PubMed  CAS  Google Scholar 

  • Bourne DG, Morrow KM, Webster NS (2016) Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu Rev Microbiol 70:317–340

    Article  PubMed  CAS  Google Scholar 

  • Breitbart M (2012) Marine viruses: truth or dare. Annu Rev Mar Sci 4:425–448

    Article  Google Scholar 

  • Briand MJ, Bonnet X, Goiran C et al (2015) Major sources of organic matter in a complex coral reef lagoon: identification from isotopic signatures (δ13C and δ15N). PLoS One 10(7): e0131555. doi:https://doi.org/10.1371/journal.pone.0131555

  • Brown BE, Blythell JC (2005) Perspectives on mucus secretion in reef corals. Mar Ecol Prog Ser 296:291–309

    Article  CAS  Google Scholar 

  • Browne NK, Precht E, Last K, Todd PA (2014) Photo-physiological costs associated with acute sediment stress events in three near-shore turbid water corals. Mar Ecol Prog Ser 502:129–143

    Article  Google Scholar 

  • Burriesci MS, Raab TK, Pringle JR (2012) Evidence that glucose is the major transferred metabolite in dinoflagellate-cnidarian symbiosis. J Exp Biol 215:3467–3477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bythell JC, Wild C (2011) Biology and ecology of coral mucus release. J Exp Mar Biol Ecol 408:88–93

    Article  Google Scholar 

  • Calbet A, Saiz E (2005) The ciliate-copepod link in marine ecosystems. Aquat Microb Ecol 157:157–167

    Article  Google Scholar 

  • Cardini U, Bednarz VN, Foster RA et al (2014) Benthic N2 fixation in coral reefs and the potential effects of human-induced environmental change. Ecol Evol 4:1706–1727

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardini U, Bednarz VN, Naumann MS et al (2015) Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc R Soc B 282:20152257. https://doi.org/10.1098/rspb.2015.2257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carlier A, Le Guilloux E, Olu K et al (2009) Trophic relationships in a deep Mediterranean cold-water bank (Santa Maria di Leuca, Ionian Sea). Mar Ecol Prog Ser 397:125–137

    Article  CAS  Google Scholar 

  • Carlson CA, Hansell DA (2015) DOM sources, sinks, reactivity and budgets. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter, 2nd edn. Elsevier, Amsterdam, pp 65–126

    Chapter  Google Scholar 

  • Carpenter FW (1910) Feeding reactions of the rose coral (Isophyllia). Proc Am Acad Arts Sci 46:149–162

    Article  Google Scholar 

  • Charpy L, Blanchot J (1999) Picophytoplankton biomass, community structure and productivity in the Great Astrolabe Lagoon, Fiji. Coral Reefs 18:255–262

    Article  Google Scholar 

  • Charpy-Roubaud C, Charpy L, Larkum AWD (2001) Atmospheric dinitrogen fixation by benthic communities of Tikehau lagoon (Tuamotu Archipelago, French Polynesia) and its contribution to benthic primary production. Mar Biol 139:991–997

    Article  CAS  Google Scholar 

  • Clayton WS, Lasker HR (1982) Effects of light and dark treatments on feeding by the reef coral Pocillopora damicornis (Linnaeus). J Exp Mar Biol Ecol 63:269–279

    Article  Google Scholar 

  • Cocito S, Ferrier-Pagès C, Cupido R et al (2013) Nutrient acquisition in four Mediterranean gorgonian species. Mar Ecol Prog Ser 473:179–188

    Article  CAS  Google Scholar 

  • Coddeville B, Maes E, Ferrier-Pagès C, Guerardel Y (2011) Glycan profiling of gel forming mucus layer from the scleractinian symbiotic coral Oculina arbuscula. Biomolecules 12:2064–2073

    CAS  Google Scholar 

  • Coffroth MA (1984) Ingestion and incorporation of coral mucus aggregates by a gorgonian soft coral. Mar Ecol Prog Ser 17:193–199

    Article  Google Scholar 

  • Coffroth MA (1990) Mucus sheet formation on poritid corals- an evaluation of mucus as a nutrient source on reefs. Mar Biol 105:39–49

    Article  CAS  Google Scholar 

  • Coma R, Gili J-M, Zabala M, Riera T (1994) Feeding and prey capture cycles in the aposymbiotic gorgonian Paramuricea clavata. Mar Ecol Prog Ser 155:257–270

    Article  Google Scholar 

  • Coma R, Ribes M, Gili JM, Zabala M (1998) An energetic approach to the study of life-history traits of two modular colonial benthic invertebrates. Mar Ecol Prog Ser 162:89–103

    Article  Google Scholar 

  • Coma R, Ribes M, Gili J-M, Hughes RN (2001) The ultimate opportunists: consumers of seston. Mar Ecol Prog Ser 219:305–308

    Article  Google Scholar 

  • Cook PLM, Kessler AJ, Eyre BD (2017) Does denitrification occur within porous carbonate grains? Biogeosciences 14:4061–4069

    Article  Google Scholar 

  • Cooper TF, Lai M, Ulstrup KE et al (2011) Symbiodinium genotypic and environmental controls on lipids in reef building corals. PLoS One 6(5):e20434. https://doi.org/10.1371/journal.pone.0020434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Courtial L, Ferrier-Pagès C, Jacquet S et al (2017) Effects of temperature and UVR on organic matter fluxes and the metabolic activity of Acropora muricata. Biol Open 6:1190–1199

    Article  PubMed  PubMed Central  Google Scholar 

  • Crandall JB, Teece MA (2012) Urea is a dynamic pool of available nitrogen on coral reefs. Coral Reefs 31:207–214

    Article  Google Scholar 

  • Crossland CJ (1987) In situ release of mucus and DOC-lipid from the corals Acropora variabilis and Stylophora pistillata in different light regimes. Coral Reefs 6:35–42

    Article  CAS  Google Scholar 

  • Crossland CJ, Barnes DJ, Borowitzka MA (1980) Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Mar Biol 60:81–90

    Article  CAS  Google Scholar 

  • D’Elia CF (1977) The uptake and release of dissolved phosphorus by reef corals. Limnol Oceanogr 22:301–315

    Article  Google Scholar 

  • D’Elia CF, Domotor SL, Webb KL (1983) Nutrient uptake kinetics of freshly isolated zooxanthellae. Mar Biol 75:157–167

    Article  Google Scholar 

  • Dai C-F, Lin M-C (1993) The effects of flow on feeding of three gorgonians from southern Taiwan. J Exp Mar Biol Ecol 173:57–69

    Article  Google Scholar 

  • Darwin C (1842) The structure and distribution of coral reefs. Smith, Elder and Co, London (Reprinted 1962, University of California Press)

    Google Scholar 

  • Davies PL (1984) The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs 2:181–186

    Google Scholar 

  • Davy SK, Allemand D, Weis VM (2012) Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev 76:229–262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Goeij J, Van den Berg H, Van Oostveen M et al (2008) Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar Ecol Prog Ser 357:139–151

    Article  CAS  Google Scholar 

  • den Haan J, Huisman J, Brocke HJ et al (2016) Nitrogen and phosphorous uptake rates from different species from a coral reef community after a nutrient pulse. Sci Rep 6:28821

    Article  CAS  Google Scholar 

  • Dodds LA, Black KD, Orr H, Roberts JM (2009) Lipid biomarkers reveal geographic differences in food supply to the cold-water coral Lophelia pertusa (Scleractinia). Mar Ecol Progr Ser 397:113–124

    Article  CAS  Google Scholar 

  • Dubinsky Z, Jokiel PL (1994) Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pac Sci 48:313–324

    Google Scholar 

  • Ducklow HW, Mitchell R (1979) Composition of mucus released by reef coelenterates. Limnol Oceanogr 24:706–714

    Article  CAS  Google Scholar 

  • Duerden JE (1902) West Indian madreporarian polyps. Mem Natl Acad Sci 7:309–649

    Google Scholar 

  • Duerden JE (1906) The role of mucus in corals. Quart J Microsc Sci 49:591–614

    Google Scholar 

  • Duineveldt GCA, Jeffreys RM, Lavaleye MSS et al (2012) Mar Ecol Prog Ser 444:97–115

    Article  Google Scholar 

  • Edmunds PJ, Davies PS (1989) An energy budget for Porites porites (Scleractinia) growing in a stressed environment. Coral Reefs 8:37–43

    Article  Google Scholar 

  • Einbinder S, Mass T, Brokovich E et al (2009) Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Mar Ecol Prog Ser 381:167–174

    Article  Google Scholar 

  • Elias-Piera F, Rossi S, Gili J-M, Orejas C (2013) Trophic ecology of seven Antarctic gorgonian species. Mar Ecol Prog Ser 477:93–106

    Article  Google Scholar 

  • Erler BD, Santos IR, Eyre D (2014) Inorganic transformations within permeable carbonate sands. Cont Shelf Res 77:69–80

    Article  Google Scholar 

  • Eyal G, Wiedenmann J, Grinblat M et al (2015) Spectral diversity and regulation of coral fluorescence in a mesophotic reef habitat in the Red Sea. PLoS One 10(6):e0128697. https://doi.org/10.1371/journal.pone.0128697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fabricius K, Alderslade P (2001) Soft corals and sea fans. Australian Institute of Maine Sciences, Townsville

    Google Scholar 

  • Fabricius KE, Dommisse M (2000) Depletion of suspended particulate matter over coastal reef communities dominated by zooxanthellate soft corals. Mar Ecol Prog Ser 196:157–167

    Article  CAS  Google Scholar 

  • Fabricius KE, Klumpp DW (1995) Widespread mixotrophy in reef-inhabiting soft corals: the influence of depth, and colony expansion and contraction on photosynthesis. Mar Ecol Prog Ser 125:195–204

    Article  Google Scholar 

  • Fabricius KE, Benayahu Y, Genin A (1995a) Herbivory in asymbiotic soft corals. Science 268:90–92

    Article  PubMed  CAS  Google Scholar 

  • Fabricius KE, Genin A, Benayahu Y (1995b) Flow-dependent herbivory and growth in a zooxanthellae-free soft coral. Limnol Oceanogr 40:1290–1301

    Article  Google Scholar 

  • Falkowski PG, Dubinsky Z, Muscatine L, Porter JW (1984) Light and energetics of a symbiotic coral. Bioscience 34:705–709

    Article  CAS  Google Scholar 

  • Fenchel T (1982) Ecology of heterotrophic microflagellates. 1. Some important forms and their functional morphology. Mar Ecol Prog Ser 8:211–223

    Article  Google Scholar 

  • Ferrier MD (1991) Net uptake of dissolved free amino acids by four scleractinian corals. Coral Reefs 10:183–187

    Article  Google Scholar 

  • Ferrier-Pagès C, Furla P (2001) Pico- and nanoplankton biomass and production in the two largest atoll lagoons of French Polynesia. Mar Ecol Prog Ser 211:63–76

    Article  Google Scholar 

  • Ferrier-Pagès C, Gattuso J-P (1998) Biomass, production and grazing rates of pico- and nanoplankton in coral reef waters (Miyako Island, Japan). Microb Ecol 35:46–57

    Article  PubMed  Google Scholar 

  • Ferrier-Pagès C, Gatusso J-P, Cauwet G et al (1998a) Release of dissolved organic carbon and nitrogen by the zooxanthellate coral Galaxea fascicularis. Mar Ecol Prog Ser 172:265–274

    Article  Google Scholar 

  • Ferrier-Pagès C, Allemand D, Gattuso J-P et al (1998b) Microheterotrophy in the zooxanthellate coral Stylophora pistillata: effects of light and ciliate density. Limnol Oceanogr 43:1639–1648

    Article  Google Scholar 

  • Ferrier-Pagès C, Leclercq N, Jaubert J, Pelegri SP (2000) Enhancement of pico- and nanoplankton growth by coral exudates. Aquat Microb Ecol 21:203–209

    Article  Google Scholar 

  • Ferrier-Pagès C, Witting J, Tambutté E, Sebens KP (2003) Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22:229–240

    Article  Google Scholar 

  • Ferrier-Pagès C, Rottier C, Beraud E, Levy O (2010) Experimental assessment of the feeding effort of three scleractinian coral species during a thermal stress: effect on the rates of photosynthesis. J Exp Mar Biol Ecol 390:118–124

    Article  Google Scholar 

  • Ferrier-Pagès C, Hoogenboom M, Houlbrèque F (2011a) The role of plankton in coral trophodynamics. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 215–229

    Chapter  Google Scholar 

  • Ferrier-Pagès C, Peirano A, Abbate M et al (2011b) Summer autotrophy in the temperate symbiotic coral Cladocora cespitosa. Limnol Oceanogr 56:1429–1438

    Article  Google Scholar 

  • Ferrier-Pagès C, Reynaud S, Beraud E et al (2015) Photophysiology and daily primary production of a temperate symbiotic gorgonian. Photosynth Res 123:95–1204

    Article  PubMed  CAS  Google Scholar 

  • Ferrier-Pagès C, Godinot C, D’Angelo C (2016) Phosphorus metabolism of reef organisms with algal symbionts. Ecol Monogr 86:262–277

    Article  Google Scholar 

  • Fonvielle JA, Reynaud S, Jaquet S et al (2015) First evidence of an important organic matter trophic pathway between temperate corals and pelagic microbial communities. PLoS One 10(10):e0139175. https://doi.org/10.1371/journal.pone.0139175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frazão B, Vasconcelos V, Antunes A (2012) Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview. Mar Drugs 10(8):1812–1851. https://doi.org/10.3390/md10081812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furnas MJ, Mitchell AW (1986) Phytoplankton dynamics in the central Great Barrier Reef-I. Seasonal changes in biomass and community structure and their relation to intrusive activity. Cont Shelf Res 6:363–384

    Article  Google Scholar 

  • Garren M, Azam F (2011) New directions in coral reef microbial ecology. Environ Microbiol 14:833–844

    Article  PubMed  CAS  Google Scholar 

  • Gattuso J-P, Yellowlees D, Lesser M (1993) Depth- and light-dependent variation of carbon partitioning and utilization in the zooxanthellate coral Stylophora pistillata. Mar Ecol Prog Ser 92:267–276

    Article  Google Scholar 

  • Genin A, Monismith SG, Reidenbach MA et al (2009) Intense benthic grazing of phytoplankton in a coral reef. Limnol Oceanogr 54:938–951

    Article  Google Scholar 

  • Glasl B, Herndl GJ, Frade PR (2016) The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J 10:2280–2292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Godinot C, Ferrier-Pagès C, Grover R (2009) Control of phosphate uptake by zooxanthellae and host cells in the scleractinian coral Stylophora pistilata. Limnol Oceanogr 54:1627–1633

    Article  Google Scholar 

  • Godinot C, Grover R, Allemand D, Ferrier-Pagès C (2011) High phosphate uptake requirements of the scleractinian coral Stylophora pistillata. J Exp Biol 214:2749–2754

    Article  PubMed  CAS  Google Scholar 

  • Godinot C, Gaysinki M, Thomas OP et al (2016) On the use of 31P NMR for the quantification of hydrosoluble phosphorous-containing compounds in coral host tissues and cultured zooxanthellae. Sci Rep 6:21760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldberg WM (2002a) Feeding behavior, epidermal structure and mucus cytochemistry of the scleractinian Mycetophyllia reesi, a coral without tentacles. Tissue Cell 24:232–245

    Article  Google Scholar 

  • Goldberg WM (2002b) Gastrodermal structure and feeding responses in the scleractinian Mycetophyllia reesi, a coral without tentacles. Tissue Cell 34:246–261

    Article  PubMed  Google Scholar 

  • Goldberg WM (2004) Epidermal structure of the scleractinian coral Mycetophyllia ferox: light-induced vesicles, copious mucocytes, and sporadic tentacles. Hydrobiologia 530:451–458

    Google Scholar 

  • Goldberg WM, Taylor GT (1989a) Cellular structure and ultrastructure of the black coral Antipathes aperta: 1. Organization of the tentacular epidermis and nervous system. J Morphol 202:239–253

    Article  PubMed  Google Scholar 

  • Goldberg WM, Taylor GT (1989b) Cellular structure and ultrastructure of the black coral Antipathes aperta: 2. The gastrodermis and its collar cells. J Morphol 202:255–269

    Article  PubMed  Google Scholar 

  • Goldberg WM, Taylor GT (1996) Ultrastructure of the spirocyst tubule in black corals (Coelenterata: Antipatharia) and its taxonomic implications. Mar Biol 125:655–662

    Article  Google Scholar 

  • Goreau TF, Goreau NI, Yonge CM (1971) Reef corals: autotrophs or heterotrophs? Biol Bull 141:247–260

    Article  Google Scholar 

  • Gori A, Grover R, Orejas C et al (2014) Uptake of dissolved free amino acids by four cold-water coral species from the Mediterranean Sea. Deep Sea Res 99:42–50

    Article  CAS  Google Scholar 

  • Gottfried M, Roman MR (1983) Ingestion and incorporation of coral-mucus detritus by zooplankton. Mar Biol 72:211–218

    Article  Google Scholar 

  • Granek EF, Compton JE, Phillips DL (2009) Mangrove-exported nutrient incorporation by sessile coral reef invertebrates. Ecosystems 12:462–472

    Article  CAS  Google Scholar 

  • Grossowicz M, Benayahu Y (2012) Differential morphological features of two Dendronepthya soft coral species suggest differences in feeding niches. Mar Biodiv 42:65–72

    Article  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Juarez C (2004) Lipids and stable carbon isotopes in two species of Hawaiian corals, Montipora verrucosa and Porites compressa, following a bleaching event. Mar Biol 145:621–631

    Article  CAS  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  PubMed  CAS  Google Scholar 

  • Grover R, Maguer J-F, Reynard-Vaganay S, Ferrier-Pagès C (2002) Uptake of ammonium by the scleractinian coral Stylophora pistillata: effect of feeding, light, and ammonium concentrations. Limnol Oceanogr 47:782–790

    Article  Google Scholar 

  • Grover R, Maguer J-F, Allemand D, Ferrier-Pagès C (2003) Nitrate uptake in the scleractinian coral Stylophora pistillata. Limnol Oceanogr 48:2266–2274

    Article  CAS  Google Scholar 

  • Grover R, Maguer J-F, Allemand D, Ferrier-Pagès C (2006) Urea uptake by the scleractinian coral Stylophora pistillata. J Exp Mar Biol Ecol 332:216–225

    Article  CAS  Google Scholar 

  • Grover R, Maguer JF, Allemand D, Ferrier-Pagès C (2008) Uptake of dissolved free amino acids by the scleractinian coral Stylophora pistillata. J Exp Biol 211:860–865

    Article  PubMed  CAS  Google Scholar 

  • Grover R, Ferrier-Pagès C, Maguer J-F et al (2014) Nitrogen fixation in the mucus of Red Sea corals. J Exp Biol 217:3962–3963

    Article  PubMed  Google Scholar 

  • Gustafsson MSM, Baird ME, Ralph PJ (2013) The interchangeability of autotrophic and heterotrophic nitrogen sources in scleractinian coral symbiotic relationships: a numerical study. Ecol Model 250:183–194

    Article  CAS  Google Scholar 

  • Haas AF, Wild C (2010) Composition analysis of organic matter released by cosmopolitan coral reef-associated green algae. Aquat Biol 10:131–138

    Article  Google Scholar 

  • Haas AF, Naumann MS, Struck U et al (2010) Organic matter release by coral reef associated benthic algae in the northern Red Sea. J Exp Mar Biol Ecol 389:53–60

    Article  CAS  Google Scholar 

  • Haas AF, Nelson CE, Wegley Kelly L et al (2011) Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS One 6:e27973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanson CE, McLaughlin MJ, Hyndes GA, Strzelecki J (2009) Selective uptake of prokaryotic picoplankton by a marine sponge (Callyspongia sp.) within an oligotrophic coastal system. Estuar Coast Shelf Sci 84:289–297

    Article  CAS  Google Scholar 

  • Hata H, Setsuko K, Yamano H et al (2002) Organic carbon flux in Shiraho coral reef (Ishigaki Island, Japan). Mar Ecol Prog Ser 232:129–140

    Article  Google Scholar 

  • Hatcher BG (1988) Coral reef primary productivity: a beggar’s banquet. Trends Ecol Evol 3:106–111

    Article  PubMed  CAS  Google Scholar 

  • Hatcher BG (1990) Coral reef primary productivity. A hierarchy of pattern and process. Trends Ecol Evol 5:149–155

    Article  PubMed  CAS  Google Scholar 

  • Heck KL, Carruthers TJB, Duarte CM et al (2008) Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial communities. Ecosystems 11:1198–1210

    Article  Google Scholar 

  • Heidelberg KB, Sebens KP, Purcell JE (2004) Composition and sources of near-reef zooplankton on a Jamaican reef along with implications for coral feeding. Coral Reefs 23:263–276

    Article  Google Scholar 

  • Hessinger DA (1988) Nematocyst venoms and toxins. In: Hessinger DA, Lenhoff HM (eds) The biology of nematocysts. Academic Press, New York, pp 333–368

    Chapter  Google Scholar 

  • Hii Y-S, Soo C, Liew H (2009) Feeding of scleractinian coral, Galaxea fascicularis, on Artemia salina nauplii in captivity. Aquacult Int 17:363–376

    Article  Google Scholar 

  • Hoer DR, Gibson PJ, Tommerdahl JP et al (2018) Consumption of dissolved organic carbon by Caribbean reef sponges. Limnol Oceanogr 63:337–351

    Article  CAS  Google Scholar 

  • Hoogenboom M, Rodolfo-Metalpa R, Ferrier-Pagès C (2010) Co-variation between autotrophy and heterotrophy in the Mediterranean coral Cladocora caespitosa. J Exp Biol 213:2399–2409

    Article  PubMed  Google Scholar 

  • Houlbrèque F, Ferrier-Pagès C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev 84:1–17

    Article  PubMed  Google Scholar 

  • Houlbrèque F, Tambutté E, Allemand D, Ferrier-Pagès C (2004a) Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata. J Exp Biol 207:1461–1469

    Article  PubMed  Google Scholar 

  • Houlbrèque F, Tambutté E, Richard C, Ferrier-Pagès C (2004b) Importance of a micro-diet for scleractinian corals. Mar Ecol Prog Ser 282:151–160

    Article  Google Scholar 

  • Houlbrèque F, Delesalle B, Blanchot J et al (2006) Picoplankton removal by the coral reef community of La Prévoyante, Mayotte Island. Aquat Microb Ecol 44:59–70

    Article  Google Scholar 

  • Huettel M, Wild C, Gonelli S (2006) Mucus trap in coral reefs: formation and temporal evolution of particle aggregates caused by coral mucus. Mar Ecol Prog Ser 307:69–84

    Article  Google Scholar 

  • Hughes AD, Grottoli AG (2013) Heterotrophic compensation: a possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress? PLoS One 8:e81172

    Article  PubMed  PubMed Central  Google Scholar 

  • Imbs AB, Yakovleva IM (2012) Dynamics of lipid and fatty acid composition of shallow-water corals under thermal stress: an experimental approach. Coral Reefs 31:41–53

    Article  Google Scholar 

  • Imbs AB, Latyshev NA, Dautova TN (2010) Distribution of lipids and fatty acids in corals by their taxonomic position and presence of zooxanthellae. Mar Ecol Prog Ser 409:65–75

    Article  CAS  Google Scholar 

  • Imbs AB, Demidkpva DA, Dautova TN (2016) Lipids and fatty acids of cold-water soft corals and hydrocorals: a comparison with tropical species and implications for coral nutrition. Mar Biol 163:202–213

    Article  CAS  Google Scholar 

  • Jackson AE, Yellowlees D (1990) Phosphate uptake by zooxanthellae isolated from corals. Proc R Soc B 242:201–204

    Article  Google Scholar 

  • Jacobi Y, Yahel G, Shenkar N (2017) Efficient filtration of micron and submicron particles by ascidians from oligotrophic waters. Limnol Oceanogr. https://doi.org/10.1002/lno.10736

  • Jaffé R, Boyer JN, Lu X et al (2004) Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis. Mar Chem 84:195–210

    Article  CAS  Google Scholar 

  • Jatkar AA, Brown BE, Bythell JC et al (2010) Coral mucus: the properties of its constituent mucins. Biomacromolecules 11:883–888

    Article  PubMed  CAS  Google Scholar 

  • Johnson AS, Sebens KP (1993) Consequences of a flattened morphology: effects of flow on feeding rates of the scleractinian coral Meandrina meandrites. Mar Ecol Prog Ser 99:99–114

    Article  Google Scholar 

  • Jouiaei M, Yanagihara AA, Madio B et al (2015) Ancient venom systems: a review on Cnidaria toxins. Toxins 7:2251–2271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karl DM, Björkman KM (2015) Dynamics of dissolved organic phosphorus. In: Hansell DA, Carlson CA (eds) Dynamics of dissolved marine organic matter. Academic Press, Burlington, pp 233–334

    Google Scholar 

  • Kellogg CA (2004) Tropical archaea: diversity associated with the surface microlayer of corals. Mar Ecol Prog Ser 273:81–88

    Article  CAS  Google Scholar 

  • Kopp C, Pernice M, Domart-Coulon I et al (2013) Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen. MBio 4:1–9

    Article  Google Scholar 

  • Kremien M, Shavit U, Mass T, Genin A (2013) Benefit of pulsation in soft corals. Proc Natl Acad Sci USA 110:8978–8983

    Article  PubMed  PubMed Central  Google Scholar 

  • Krupp DA (1984) Mucus production by corals exposed during an extreme low tide. Pac Sci 38:1–11

    Google Scholar 

  • LaBarbara ML (1984) Feeding currents and particle capture mechanisms in suspension feeding animals. Am Zool 24:71–84

    Article  Google Scholar 

  • Lang JC (1973) Interspecific aggression by scleractinian corals. 2. Why the race is not only to the swift. Bull Mar Sci 23:260–279

    Google Scholar 

  • Lang JC, Chornesky EA (1990) Competition between scleractinian reef corals-a review of mechanisms and effects. In: Dubinsky D (ed) Ecosystems of the world. Coral reefs, vol 25. Elsevier, Amsterdam, pp 209–252

    Google Scholar 

  • Lasker HR (1981) A comparison of the particulate feeding abilities of three species of gorgonian soft coral. Mar Ecol Prog Ser 5:61–67

    Article  Google Scholar 

  • Lasker HR, Gottfried MD, Coffroth MA (1983) Effects of depth on feeding capabilities of two octocorals. Mar Biol 73:73–78

    Article  Google Scholar 

  • Laybourn-Parry JEM, Parry JD (2000) Flagellates and the microbial loop. In: Leadbeater SC, Green JC (eds) The flagellates, unity, diversity and evolution. Taylor and Francis, London, pp 216–239

    Google Scholar 

  • Leal MC, Ferrier-Pagès C, Calado R et al (2014a) Trophic ecology of the facultative symbiotic coral Oculina arbuscula. Mar Ecol Prog Ser 504:171–179

    Article  Google Scholar 

  • Leal MC, Berger SA, Ferrier-Pagès C et al (2014b) Temporal changes in the tropic ecology of the asymbiotic gorgonian Leptogorgia virgulata. Mar Biol 161:2191–2197

    Article  Google Scholar 

  • Lee C, Wakeham S, Arnosti C (2004) Particulate organic matter in the sea: the composition conundrum. Ambio 33:565–575

    Article  PubMed  Google Scholar 

  • Lee STM, Davy SK, Tang S-L et al (2015) Successive shifts in the microbial community of the surface mucus layer and tissues of the coral Acropora muricata under thermal stress. FEMS Microbiol Ecol 91:fiv142. https://doi.org/10.1093/femsec/fiv142

    Article  PubMed  CAS  Google Scholar 

  • Lee STM, Davy SK, Tang S-L, Kench PS (2016) Mucus sugar content shapes the bacterial community structure in thermally stressed Acropora muricata. Front Microbiol 7:371. https://doi.org/10.3389/fmicb.2016.00371

    Article  PubMed  PubMed Central  Google Scholar 

  • Legendre L, Demers S, Delesalle B, Harnols C (1988) Biomass and phototrophic picoplankton in coral reef waters (Moorea, French Polynesia). Mar Ecol Prog Ser 47:153–160

    Article  Google Scholar 

  • Léger P, Bengtson DA, Sorgeloos P et al (1987) The nutritional value of Artemia: a review. In: Persoone G, Sorgeloos P, Roels O, Jaspers E (eds) The brine shrimp Artemia. Ecology, culturing, use in aquaculture, vol 3. Universa Press, Wetteren, pp 357–372

    Google Scholar 

  • Lesser MP, Mazel CH, Gorbunov MY, Falkowski PG (2004) Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305:997–1000

    Article  PubMed  CAS  Google Scholar 

  • Lesser MP, Falcón LI, Rodriguez-Román A et al (2007) Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar Ecol Prog Ser 346:143–152

    Article  CAS  Google Scholar 

  • Lesser MP, Slattery M Stat M et al (2010) Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91:990–1003

    Article  PubMed  Google Scholar 

  • Levy O, Mizrahi L, Chadwick-Furman NE, Achituv Y (2000) Factors controlling the expansion behavior of Favia favus (Cnidaria:Scleractinia): effects of light, flow, and planktonic prey. Biol Bull 200:118–126

    Article  Google Scholar 

  • Levy O, Dubinsky Z, Achituv Y (2003) Photobehavior of stony corals: responses to light spectra and intensity. J Exp Biol 206:4041–4049

    Article  PubMed  CAS  Google Scholar 

  • Levy O, Karako-Lampert S, Ben-Asher HW et al (2016) Molecular assessment of the effect of light and heterotrophy in the scleractinian coral Stylophora pistillata. Proc R Soc B 283:20153025

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lewis JB (1978) Feeding mechanisms in black corals (Antipatharia). J Zool 186:393–396

    Article  Google Scholar 

  • Lewis JB (1982) Feeding behavior and feeding ecology of the Octocorallia (Coelenterata: Anthozoa). J Zool 196:371–384

    Article  Google Scholar 

  • Lewis JB, Price WS (1975) Feeding mechanisms and feeding strategies of Atlantic reef corals. J Zool 176:527–544

    Article  Google Scholar 

  • Lewis JB, Price WS (1976) Patterns of ciliary currents in Atlantic reef corals and their functional significance. J Zool 178:77–89

    Article  Google Scholar 

  • Lomas MW, Burke AL, Bell DW et al (2010) Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus. Biogeosciences 7:695–710

    Article  CAS  Google Scholar 

  • Longhurst A, Pauly D (1987) Ecology of tropical oceans. Academic Press, San Diego

    Google Scholar 

  • Lorrain A, Houlbrèque F, Benzoni F et al (2017) Seabirds supply nitrogen to reef-building corals on remote Pacific islets. Sci Rep 7:3721. https://doi.org/10.1038/s41598-017-03781-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Mariscal RN (1984) Cnidae. In: Bereiter-Hahn J, Matolsky AG, Richards KS (eds) Biology of the integument. Springer, Berlin, pp 57–111

    Chapter  Google Scholar 

  • Mariscal RN, Bigger CH (1977) Possible ecological significance of octocoral epithelia1 ultrastructure. Proc 3rd Intl Coral Reef Symp Miami 1:127–134

    Google Scholar 

  • Mariscal RN, Lenhoff HM (1968) The chemical control of feeding behavior in Cyphastrea ocellina and in some other Hawaiian corals. J Exp Biol 49:689–699

    PubMed  CAS  Google Scholar 

  • Mariscal RN, McLean RB, Hand C (1977) The form and function of cnidarian spirocysts. 3. Ultrastructure of the thread and the function of spirocysts. Cell Tissue Res 178:427–433

    Article  PubMed  CAS  Google Scholar 

  • Marshall AT, Wright OP (1993) Confocal laser scanning light microscopy of the extra-thecal epithelia of undecalcified scleractinian corals. Cell Tissue Res 272:533–543

    Article  Google Scholar 

  • Martin W, Scheibe R, Schnarrenberger C (2000) The Calvin cycle and its regulation. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Photosynthesis. Advances in photosynthesis and respiration, vol 9. Springer, Dordrecht, pp 9–51

    Google Scholar 

  • Matthai G (1918) On reactions to stimuli in corals. Proc Camb Philos Soc 19:164–162

    Google Scholar 

  • Mayer FW, Wild C (2010) Coral Mucus release and following particle trapping contribute to rapid nutrient recycling in a northern Red Sea fringing reef. Mar Freshw Res 61:1006–1014

    Article  CAS  Google Scholar 

  • McKew BA, Dumbrell AJ, Daud SD et al (2012) Characterization of geographically distinct bacterial communities associated with coral mucus produced by Acropora spp. and Porites spp. Appl Environ Microbiol 84:5229–5237

    Article  CAS  Google Scholar 

  • McMurray SE, Johnson ZI, Hunt DE et al (2016) Selective feeding by the giant barrel sponge enhances foraging efficiency. Limnol Oceanogr 61:1271–1286

    Article  Google Scholar 

  • Meikle P, Richards GN, Yellowlees D (1988) Structural investigations on the mucus from six species of coral. Mar Biol 99:187–193

    Article  CAS  Google Scholar 

  • Meyer JL, Schultz ET (1985) Migrating haemulid fishes as a source of nutrients and organic matter on coral reefs. Limnol Oceanogr 30:146–156

    Article  Google Scholar 

  • Middleburg JJ, Mueller CE, Veuger B et al (2015) Discovery of symbiotic nitrogen fixation and chemoautotrophy in cold-water corals. Sci Rep 5:17962. https://doi.org/10.1038/srep17962

    Article  CAS  Google Scholar 

  • Migne A, Davoult D (2002) Experimental nutrition in the soft coral Alcyonium digitatum (Cnidaria: Octocorallia): removal rate of phytoplankton and zooplankton. Cah Biol Mar 43:9–16

    Google Scholar 

  • Mills MM, Sebens KP (2004) Ingestion and assimilation of nitrogen from benthic sediments by three species of coral. Mar Biol 145:1097–1106

    Article  CAS  Google Scholar 

  • Mills MM, Lipschultz F, Sebens KP (2004a) Particulate matter ingestion and associated nitrogen uptake by four species of scleractinian corals. Coral Reefs 23:311–323

    Article  Google Scholar 

  • Mills MM, Ridame C, Dave M (2004b) Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429:292–294

    Article  PubMed  CAS  Google Scholar 

  • Møller EF, Thjor P, Nielsen TG (2003) Production of DOC by Calanis finmarchicus, C. glacialis and C. hyperboeus through sloppy feeding and leakage from fecal pellets. Mar Ecol Prog Ser 262:185–191

    Article  Google Scholar 

  • Moran Y, Genikhovich G, Gordon D et al (2012) Neurotoxin localization to ectodermal gland cells uncovers an alternative mechanism of venom delivery in sea anemones. Proc Biol Sci 279:1351–1358

    Article  PubMed  CAS  Google Scholar 

  • Mortensen PB (2001) Aquarium observations on the deep-water coral Lophelia pertusa (L., 1758) (Scleractinia) and selected associated invertebrates. Ophelia 54:83–104

    Article  Google Scholar 

  • Mueller CE, Larsson AI, Veuger B et al (2014a) Opportunistic feeding on various organic food sources by the cold-water coral Lophelia pertusa. Biogeosciences 11:123–133

    Article  Google Scholar 

  • Mueller B, van der Zande RM, van Leent PJM et al (2014b) Effect of light availability on dissolved organic carbon release by Caribbean reef algae and corals. Bull Mar Sci 90:875–893

    Article  Google Scholar 

  • Mueller B, de Goeij JM, Vermeij MJA et al (2014c) Natural diet of coral-excavating sponges consists mainly of dissolved organic carbon (DOC). PLoS One 9(2):e90152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muscatine L (1973) Nutrition of corals. In: Jones OS, Endean R (eds) Biology and geology of coral reefs, vol 2., Biology. Academic Press, New York, pp 77–116

    Chapter  Google Scholar 

  • Muscatine L, D’Elia CF (1978) The uptake, retention, and release of ammonium by reef corals. Limnol Oceanogr 23:725–734

    Article  CAS  Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals: mutualistic symbiosis adapted to nutrient-poor environments. BioScience 27:454–459

    Article  Google Scholar 

  • Muscatine L, McCloskey LR, Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr 26:601–611

    Article  CAS  Google Scholar 

  • Muscatine L, Falkowski PG, Porter JW et al (1984) Fate of photosynthetic fixed carbon in light-and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc B Biol Sci 222:181–202

    Article  CAS  Google Scholar 

  • Muscatine L, Falkowski PG, Dubinsky Z et al (1989) The effect of external nutrient resources on the population dynamics of zooxanthellae in a reef coral. Proc R Soc B 236:311–324

    Article  Google Scholar 

  • Nakajima R, Yoshida T, Azman BAR et al (2009) In situ release of coral mucus by Acropora and its influence on the heterotrophic bacteria. Aquat Ecol 43:815–823

    Article  CAS  Google Scholar 

  • Nakajima R, Yoshida T, Fujita K et al (2010) Release of particulate and dissolved organic carbon by the scleractinian coral Acropora formosa. Bull Mar Sci 86:861–870

    Article  Google Scholar 

  • Nakajima R, Tanaka Y, Yoshida T et al (2015) High inorganic phosphate concentration in coral mucus and its utilization by heterotrophic bacteria in a Malaysian coral reef. Mar Ecol 36:835–841

    Article  CAS  Google Scholar 

  • Nakajima R, Yamazaki H, Lewis LS et al (2017a) Planktonic trophic structure in a coral reef ecosystem—grazing versus microbial food webs and the production of mesozooplankton. Progr Oceanogr 156:104–120

    Article  Google Scholar 

  • Nakajima R, Tanaka Y, Guillemette R, Kurihara H (2017b) Effects of coral-derived organic matter on the growth of bacterioplankton and heterotrophic nanoflagellates. Coral Reefs 36:1171–1179

    Article  Google Scholar 

  • Naumann MS, Richter C, el-Zibdah M, Wild C (2009) Coral mucus as an efficient trap for picoplanktonic cyanobacteria: implications for pelagic-benthic coupling in the reef ecosystem. Mar Ecol Prog Ser 385:65–76

    Article  Google Scholar 

  • Naumann MS, Haas A, Struck U et al (2010) Organic matter release by dominant hermatypic corals of the northern Red Sea. Coral Reefs 29:649–659

    Article  Google Scholar 

  • Naumann MS, Orejas C, Wild C, Ferrier-Pagès C (2011) First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. J Exp Biol 214:3570–3576

    Article  PubMed  CAS  Google Scholar 

  • Naumann MS, Richter C, Mott C et al (2012) Budget of coral-derived organic carbon in a fringing coral reef in the Gulf of Aqaba. J Mar Syst 105–108:20–29

    Article  Google Scholar 

  • Naumann MS, Tolosa I, Taviani M (2015) Trophic ecology of two cold-water coral species from the Mediterranean Sea revealed by lipid biomarkers and compound-specific isotope analyses. Coral Reefs 34:1165–1175

    Article  Google Scholar 

  • Nelson CE, Goldberg SJ, Kelly LW (2013) Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J 7:962–979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen-Kim H, Bouvier T, Bouvier C et al (2014) High occurrence of viruses in the mucus of scleractinian corals. Environ Microbiol Rep 6:675–682

    Article  PubMed  Google Scholar 

  • Ocaña O, Opresko DM, Brito A (2006) First record of the black coral Antipathella wollastoni (Anthozoa: Antipatharia) outside of Macaronesian waters. Rev Acad Can Cien 18:125–138

    Google Scholar 

  • Oku H, Yamashiro H, Onaga K (2003) Lipid biosynthesis from 14C-glucose in the coral Montipora digitata. Fish Sci 69:625–631

    Article  CAS  Google Scholar 

  • Olson ND, Lesser MP (2013) Diazotrophic diversity in the Caribbean coral, Montastraea cavernosa. Arch Microbiol 195:853–859

    Article  PubMed  CAS  Google Scholar 

  • Olson ND, Ainsworth TD, Gates M, Takabayashi M (2009) Diazotrophic bacteria associated with Hawaiian Montipora corals: diversity and abundance in correlation with symbiotic dinoflagellates. J Exp Mar Biol Ecol 371:140–146

    Article  CAS  Google Scholar 

  • Omori M, Ikeda T (1992) Methods in marine zooplankton ecology. Krieger Publishing, Malabar

    Google Scholar 

  • Orejas C, Gili J-M, Arntz W (2003) Role of small-plankton communities in the diet of two Antarctic octocorals (Primnoisis Antarctica and Primnoella sp.). Mar Ecol Prog Ser 250:105–116

    Article  Google Scholar 

  • Orejas C, Gori A, Rad-Menéndez C et al (2016) The effect of flow speed and food size on the capture efficiency and feeding behavior of the cold-water coral Lophelia pertusa. J Exp Mar Biol Ecol 481:34–40

    Article  Google Scholar 

  • Palardy JE, Grottoli AG, Matthews KA (2005) Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Mar Ecol Prog Ser 300:79–89

    Article  Google Scholar 

  • Palardy JE, Grottoli A, Mathews KA (2006) Effect of naturally changing zooplankton concentrations on feeding rates of two coral species in the Eastern Pacific. J Exp Mar Biol Ecol 331:99–107

    Article  Google Scholar 

  • Palardy JE, Rodrigues LJ, Grottoli AG (2008) The importance of zooplankton to the daily requirements of healthy and bleached corals. J Exp Mar Biol Ecol 367:180–188

    Article  CAS  Google Scholar 

  • Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127

    PubMed  PubMed Central  CAS  Google Scholar 

  • Passow U (2002) Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55:287–333

    Article  Google Scholar 

  • Patten N, Wyatt A, Lowe R, Waite A (2011) Uptake of picophytoplankton, bacterioplankton and virioplankton by a fringing coral reef community (Ningaloo Reef, Australia). Coral Reefs 30:555–567

    Article  Google Scholar 

  • Patterson MR (1991) The effects of flow on polyp-level prey capture in an octocoral, Alcyonium siderium. Biol Bull 180:93–102

    Article  PubMed  CAS  Google Scholar 

  • Patton J, Abraham S, Benson AA (1977) Lipogenesis in the intact coral Pocillopora capitata and its isolated zooxanthellae. Evidence of a light-driven carbon cycle between symbiont and host. Mar Biol 44:235–247

    Article  CAS  Google Scholar 

  • Pernice M, Meier H, Van Den Heuvel A et al (2012) A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis. ISME J 6:1314–1324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Picciano M, Ferrier-Pagès C (2007) Ingestion of Pico- and nanoplankton by the Mediterranean red coral Corallium rubrum. Mar Biol 150:733–782

    Article  Google Scholar 

  • Piniak GA (2002) Effect of symbiotic status, flow speed, and prey type on prey capture by the facultatively symbiotic temperate coral Oculina arbuscula. Mar Biol 141:449–455

    Article  Google Scholar 

  • Piraino S, Ulianich L, Zupo V, Russo GF (1993) Cnidocyst morphology and distribution in Corallium rubrum (L.) (Cnidaria, Anthozoa). Oebalia 19:67–78

    Google Scholar 

  • Porter JW (1974) Zooplankton feeding by the Caribbean reef- building coral Montastrea cavernosa. In: Cameron AM, Campbell BM, Cribb AB et al (eds) Proceedings of the second international coral reef symposium. The Great Barrier Reef Committee, Brisbane, pp 111–125

    Google Scholar 

  • Pratt EM (1905) The digestive organs of the Alcyonaria and their relation to the mesogloeal cell plexus. Quart J Micr Sci 49:327–362

    Google Scholar 

  • Purcell S, Bellwood D (2001) Spatial patterns of epilithic algal and detrital resources on a windward reef. Coral Reefs 20:117–125

    Article  Google Scholar 

  • Purser A, Larsson AI, Thomsen L, van Oevelen D (2010) The influence of flow velocity and food concentration on Lophelia pertusa (Scleractinia) zooplankton capture rates. J Exp Mar Biol Ecol 395:55–62

    Article  Google Scholar 

  • Rädecker N, Pogoreutz C, Voolstra CR et al (2015) Nitrogen cycling in corals: the key to understanding holobiont functioning. Trends Microbiol 23:490–497

    Article  PubMed  CAS  Google Scholar 

  • Raz-Bahat M, Douek J, Moiseeva E et al (2017) The digestive system of the stony coral Stylophora pistillata. Cell Tissue Res 368:311–323

    Article  PubMed  CAS  Google Scholar 

  • Reynard S, Martinez P, Houlbrèque F et al (2009) Effect of light and feeding on the nitrogen isotopic composition of a zooxanthellate coral: role of nitrogen recycling. Mar Ecol Prog Ser 392:103–110

    Article  CAS  Google Scholar 

  • Ribes M, Coma R, Gili J-M (1998) Heterotrophic feeding by gorgonian corals with symbiotic zooxanthellae. Limnol Oceanogr 43:1170–1179

    Article  Google Scholar 

  • Ribes M, Coma R, Gili J-M (1999) Heterogeneous feeding in benthic suspension. feeders: the natural diet and grazing rate of the temperate gorgonian Paramuricea clavata (Cnidaria: Octocorallia) over a year cycle. Mar Ecol Prog Ser 183:125–137

    Article  Google Scholar 

  • Ribes M, Coma R, Rossi S (2003) Natural feeding of the temperate asymbiotic octocoral-gorgonian Leptogorgia sarmentosa (Cnidaria: Octocorallia). Mar Ecol Prog Ser 254:141–150

    Article  CAS  Google Scholar 

  • Ribes M, Coma R, Atkinson MJ, Kinzie RA III (2005) Sponges and ascidians control removal of particulate organic nitrogen from coral reef water. Limnol Oceanogr 50:1480–1489

    Article  CAS  Google Scholar 

  • Rix L, de Goeij JM, Mueller CE et al (2016) Coral mucus fuels the sponge loop in warm- and cold-water reef ecosystems. Sci Rep 6:18715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roberts MJ, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547

    Article  PubMed  CAS  Google Scholar 

  • Robertson DR (1982) Fish feces as fish food. Mar Ecol Prog Ser 7:253–265

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Periano A, Houlbrèque F et al (2008) Effects of temperature, light and heterotrophy on the growth rate and budding of the temperate coral Cladocora. Coral Reefs 27:17–25

    Article  Google Scholar 

  • Rodrigues LJ, Grottoli AG (2007) Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol Oceanogr 52:1874–1882

    Article  Google Scholar 

  • Roff G, Dove SG, Dunn SR (2009) Mesenterial filaments make a clean sweep of substrates for coral growth. Coral Reefs 28:79

    Article  Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    Article  Google Scholar 

  • Rosenberg E, Koren O, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362

    Article  PubMed  CAS  Google Scholar 

  • Roshan S, DeVries T (2017) Efficient dissolved organic carbon production and export in the oligotrophic ocean. Nat Commun 8:2036. https://doi.org/10.1038/s41467-017-02227-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosset S, D’Angelo C, Wiedenmann J (2015) Ultrastructural biomarkers in symbiotic algae reflect the availability of dissolved inorganic nutrients and particulate food to the reef coral holobiont. Front Mar Sci 2:103. https://doi.org/10.3389/fmars.2015.00103

    Article  Google Scholar 

  • Rosset S, Wiedenmann J, Reed AJ, D’Angelo C (2017) Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar Pollut Bull 118:180–187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rossi S, Ribes M, Coma R, Gili J-M (2004) Temporal variability in zooplankton prey capture rate of the passive suspension feeder Leptogorgia sarmentosa (Cnidaria: Octocorallia), a case study. Mar Biol 144:89–99

    Article  Google Scholar 

  • Rubio-Portillo E, Kersting DK, Linares C et al (2018) Biogeographic differences in the microbiome and pathobiome of the coral Cladocora caespitosa in the western Mediterranean Sea. Front Microbiol 9:22. https://doi.org/10.3389/fmicb.2018.00022

    Article  PubMed  PubMed Central  Google Scholar 

  • Rusch A, Hannides AK, Gaidos E (2009) Diverse communities of active bacteria and archaea along oxygen gradients in coral reef sediments. Coral Reefs 28:15–26

    Article  Google Scholar 

  • Sammarco PW, Coll JC (1992) Chemical adaptations in the Octocorallia—evolutionary considerations. Mar Ecol Prog Ser 88:93–104

    Article  CAS  Google Scholar 

  • Sammarco PW, Risk MJ, Schwarcz HP, Heikoop JM (1999) Cross-continental shelf trends in coral δ15N on the Great Barrier Reef: further consideration of the reef nutrient paradox. Mar Ecol Prog Ser 180:131–138

    Google Scholar 

  • Sato Y, Willis BL, Bourne DG (2009) Successional changes in bacterial communities during the development of black band disease on the reef coral, Montipora hispida. ISME J 24:203–214

    Google Scholar 

  • Schantz AA, Ladd MC, Schrack E, Burkepile DE (2017) Fish-derived nutrient hotspots shape coral reef benthic communities. Ecol Appl 25:2142–2152

    Article  Google Scholar 

  • Scheffers SR, Nieuwland G, Bak RPM, Van Duyl FC (2004) Removal of bacteria and nutrient dynamics within the coral reef framework of Curacao (Netherlands Antilles). Coral Reefs 23:413–422

    Article  Google Scholar 

  • Schlichter D (1982) Epidermal nutrition of the alcyonarian Heteroxenia fuscescens (Ehrib): absorption of dissolved organic material and lost endogenous photosynthates. Oecologia 53:40–49

    Article  PubMed  Google Scholar 

  • Schlichter D, Brendelberger H (1998) Plasticity of the scleractinian body plan: functional morphology and trophic specialization of Mycedium elephantotus (Pallas, 1766). Facies 39:227–241

    Article  Google Scholar 

  • Schlichter D, Fricke HW, Weber W (1986) Light harvesting by wavelength transformation in a symbiotic coral of the Red Sea twilight zone. Mar Biol 91:403–407

    Article  Google Scholar 

  • Schmidt H, Moraw B (1982) The cnidogenesis of the Octocorallia (Anthozoa, Cnidaria) 2. maturation, migration and degeneration of cnidoblast and nematocyst. Helgol Meeresunters 35:97–118

    Article  Google Scholar 

  • Schöttner SI, Pfitzner B, Grünke S (2011) Drivers of bacterial diversity dynamics in permeable carbonate and silicate coral reef sands from the Red Sea. Environ Microbiol 13:1815–1826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sebens KP (1984) Water flow and coral colony size: interhabitat comparisons of the octocoral Alcyonium siderium. Proc Natl Acad Sci USA 81:5473–5477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sebens KP, Johnson AS (1991) Effect of water movement on prey capture and distribution of reef coral. Hydrobiologia 226:91–101

    Article  Google Scholar 

  • Sebens KP, Koehl MAR (1984) Predation on zooplankton by the benthic anthozoans Alcyonium siderium (Alcyonacea) and Metridium senile (Actiniaria) in the New England subtidal. Mar Biol 81:255–271

    Article  Google Scholar 

  • Sebens KP, Vandersall KS, Savina LA, Graham KR (1996) Zooplankton capture by two scleractinian corals, Madracis mirabilis and Montastraea cavernosa, in a field enclosure. Mar Biol 127:303–317

    Article  Google Scholar 

  • Sebens KP, Grace SP, Helmuth B et al (1998) Water flow and prey capture by three scleractinian corals, Madracis mirabilis, Montastraea cavernosa and Porites porites, in a field enclosure. Mar Biol 131:347–360

    Article  Google Scholar 

  • Seeman J (2013) The use of 13C and 15N isotope labeling techniques to assess heterotrophy of corals. J Exp Mar Biol Ecol 442:88–95

    Article  CAS  Google Scholar 

  • Servetto N, Rossi S, Fuentes V et al (2017) Seasonal trophic ecology of the dominant Antarctic coral Malacobelemnon daytoni (Octocorallia, Pennatulacea, Kophobelemnidae). Mar Environ Res 130:264–274

    Article  PubMed  CAS  Google Scholar 

  • Shapiro OH, Fernandez VI, Garren M et al (2014) Vortical ciliary flows actively enhance mass transport in reef corals. Proc Natl Acad Sci USA 111:13391–13396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharon G, Rosenberg E (2008) Bacterial growth on coral mucus. Curr Microbiol 56:481–488

    Article  PubMed  CAS  Google Scholar 

  • Sharoni S, Trainic M, Schatz D et al (2015) Infection of phytoplankton by aerosolized marine viruses. Proc Natl Acad Sci USA 112:6643–6647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sherwood OA, Jamieson RE, Edinger EN et al (2008) Stable C and N isotopic composition of cold-water corals from Newfoundland and Labrador continental slope: examination of trophic, depth and spatial effects. Deep-Sea Res 55:1392–1402

    Article  CAS  Google Scholar 

  • Shick JM (1991) A functional biology of sea anemones. Springer Science+Business Media, Dordrecht

    Book  Google Scholar 

  • Sieburth JM, Smetacek V, Lenz J (1978) Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol Oceanogr 23:1256–1263

    Article  Google Scholar 

  • Silveira CB, Cavalcanti GS, Walter JM et al (2017) Microbial processes driving coral reef organic carbon flow. FEMS Microbiol Rev 41:575–595

    Article  PubMed  Google Scholar 

  • Slattery M, McClintock JB, Bowser SS (1997) Deposit feeding: a novel mode of nutrition in the Antarctic colonial soft coral Gersemia antarctica. Mar Ecol Prog Ser 149:299–304

    Article  Google Scholar 

  • Smriga S, Sandin SA, Azam F (2010) Abundance, diversity, and activity of microbial assemblages associated with coral reef fish guts and feces. FEMS Microbiol Ecol 73:31–42

    PubMed  CAS  Google Scholar 

  • Sohm JA, Webb EA, Capone DG (2011) Emerging patterns of marine nitrogen fixation. Nat Rev Microbiol 9:499–508

    Article  PubMed  CAS  Google Scholar 

  • Sokolow S (2009) Effects of a changing climate on the dynamics of coral infectious disease: a review of the evidence. Dis Aquat Organ 87:5–18

    Article  PubMed  Google Scholar 

  • Sorokin Y (1973) On the feeding of some scleractinian corals with bacteria and dissolved organic matter. Limnol Oceanogr 18:380–385

    Article  CAS  Google Scholar 

  • Sorokin Y (1991) Biomass, metabolic rates and feeding of some common reef zoantharians and octocorals. Aust J Mar Freshwater Res 42:729–741

    Article  Google Scholar 

  • Sorokin YI (1992) Phosphorus metabolism in coral reef communities: Exchange between the water column and bottom biotopes. Hydrobiologia 242:105–114

    Article  CAS  Google Scholar 

  • Sorokin Y (1995) Coral reef ecology. Springer, Berlin

    Google Scholar 

  • Sorokin YI, Sorokin PY (2010) Plankton of the central Great Barrier Reef: abundance, production and trophodynamic roles. J Mar Biol Assoc UK 90:1173–1187

    Article  Google Scholar 

  • Stimson JS (1987) Location, quantity and rate of change in quantity of lipids in tissue of Hawaiian hermatypic corals. Bull Mar Sci 41:889–904

    Google Scholar 

  • Stocker JG (1988) Phototrophic picoplankton: an overview from marine and freshwater ecosystems. Limnol Oceanogr 33:765–775

    Google Scholar 

  • Stocker JG (2012) Marine microbes see a sea of gradients. Science 338:628–633

    Article  PubMed  CAS  Google Scholar 

  • Strömberg SM, Östman C (2017) The cnidome and internal morphology of Lophelia pertusa (Linnaeus, 1758) (Cnidaria, Anthozoa). Acta Zool 98:191–213

    Article  PubMed  Google Scholar 

  • Suttle CA (2005) Viruses in the sea. Nature 437:356–361

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Casareto BE (2011) The role of dissolved organic nitrogen (DON) in coral biology and reef ecology. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer Sci Business Media BV, Dordrecht, pp 207–214

    Google Scholar 

  • Sweet M, Bythell J (2016) The role of viruses in coral health and disease. J Invertebr Pathol 147:136–144

    Article  PubMed  Google Scholar 

  • Tada K, Sakai K, Nakano Y et al (2003) Size-fractionated phytoplankton biomass in coral reef waters off Sesoko Island, Okinawa, Japan. J Plankton Res 25:991–997

    Article  CAS  Google Scholar 

  • Tagliafico A, Rudd D, Rangel MS et al (2017a) Lipid-enriched diets reduce the impacts of thermal stress in corals. Mar Ecol Prog Ser 573:129–141

    Article  Google Scholar 

  • Tagliafico A, Rangel S, Kelaher B, Christidis L (2017b) Optimizing heterotrophic feeding rates of three commercially important scleractinian corals. Aquaculture 483:96–101

    Article  Google Scholar 

  • Tanaka Y, Miyajima T, Isao K et al (2008) Production of dissolved and particulate organic matter by the reef-building corals Porites cylindrica and Acropora pulchra. Bull Mar Sci 82:237–245

    Google Scholar 

  • Tanaka Y, Miyajima T, Umezawa Y (2009) Net release of dissolved organic matter by the scleractinian coral Acropora pulchra. J Exp Mar Biol Ecol 377:101–106

    Article  CAS  Google Scholar 

  • Tanaka Y, Ogawa H, Miyajima T (2011) Bacterial decomposition of coral mucus as evaluated by long-term and quantitative observation. Coral Reefs 30:443–449

    Article  Google Scholar 

  • Tanaka Y, Grottoli AG, Matsui Y et al (2015) Partitioning of nitrogen sources to algal endosymbionts of corals with long-term 15N-labelling and a mixing model. Ecol Model 309–310:163–169

    Article  CAS  Google Scholar 

  • Taniguchi A, Yoshida T, Eguchi M (2014) Bacterial production is enhanced by coral mucus in reef systems. J Exp Mar Biol Ecol 461:331–336

    Article  CAS  Google Scholar 

  • Tazoli S, Bo M, Boyer M et al (2007) Ecological observations of some common antipatharian corals in the marine park of Bunaken (North Sulawesi, Indonesia). Zool Stud 46:227–241

    Google Scholar 

  • Tchernov D, Gorbunov MY, de Vargas C et al (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching. Proc Natl Acad Sci USA 101:13531–13535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tezcan ÖD (2016) Unusual cnidarian envenomations. In: Goffredo S, Dubinsky Z (eds) The cnidaria, past, present and future. The world of medusa and her sisters. Springer, Switzerland, pp 609–622

    Chapter  Google Scholar 

  • Thorington GU, Hessinger DA (1996) Efferent mechanisms of discharging cnidae: I. Measurements of intrinsic adherence of cnidae discharged from tentacles of the sea anemone, Aiptasia pallida. Biol Bull 190:125–138

    Article  PubMed  CAS  Google Scholar 

  • Thorington GU, Hessinger DA (1998) Efferent mechanisms of discharging cnidae: II. A nematocyst release response in the sea anemone tentacle. Biol Bull 195:145–155

    Article  PubMed  CAS  Google Scholar 

  • Thorington GU, McAuley V, Hessinger DA (2010) Effects of satiation and starvation on nematocyst discharge, prey killing and ingestion in two species of sea anemone. Biol Bull 219:122–131

    Article  PubMed  Google Scholar 

  • Thurber RV, Payet JP, Thurber AR, Correa AMS (2017) Virus-host interactions and their roles in coral reef health and disease. Nat Rev Microbiol 15:205–216

    Article  PubMed  CAS  Google Scholar 

  • Treignier C, Grover R, Ferrier-Pagès C, Tolosa I (2008) Effect of light and feeding on the fatty acid and sterol composition of zooxanthellae and host tissue isolated from the scleractinian coral Turbinaria reniformis. Limnol Oceanogr 53:2702–2710

    Article  CAS  Google Scholar 

  • Tremblay P, Peirano A, Ferrier-Pagès C (2011) Heterotrophy in the Mediterranean symbiotic coral Cladocora caespitosa: comparison with two other scleractinian species. Mar Ecol Prog Ser 422:165–177

    Article  Google Scholar 

  • Tremblay P, Grover G, Maguer J-F et al (2012a) Autotrophic carbon budget in coral tissue: a new 13C-based model of photosynthate translocation. J Exp Biol 215:1384–1393

    Article  PubMed  CAS  Google Scholar 

  • Tremblay P, Ferrier-Pagès C, Maguer JF et al (2012b) Controlling effects of irradiance and heterotrophy on carbon translocation in the temperate coral Cladocora caespitosa. PLoS One 7(9):e44672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tremblay P, Grover R, Maguer JF (2014) Carbon translocation from symbiont to host depends on irradiance and food availability in the tropical coral Stylophora pistillata. Coral Reefs 33:1–13

    Article  Google Scholar 

  • Tremblay P, Maguer JF, Grover R, Ferrier-Pagès C (2015) Trophic dynamics of scleractinian corals: stable isotope evidence. J Exp Biol 218:1223–1243

    Article  PubMed  Google Scholar 

  • Tseng LC, Dahma HU, Hsu NJ, Hwang JS (2011) Effects of sedimentation on the gorgonian Subergorgia suberosa (Pallas, 1766). Mar Biol 158:1301–1310

    Article  Google Scholar 

  • Tsounis G, Rossi S, Laudien J et al (2006) Diet and seasonal prey capture rates in the Mediterranean red coral (Corallium rubrum L.). Mar Biol 149:313–325

    Article  Google Scholar 

  • Turner JT (2002) Zooplankton fecal pellets, marine snow and sinking plankton blooms. Aquat Microb Ecol 27:57–102

    Article  Google Scholar 

  • Turner JT (2015) Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog Oceanogr 130:205–248

    Article  Google Scholar 

  • Ulstrup KE, van Oppen MJH, Kühl M, Ralph J (2007) Inter-polyp genetic and physiological characterization of Symbiodinium in an Acropora valida colony. Mar Biol 153:225–234

    Article  Google Scholar 

  • van Oevelen D, Mueller CE, Lundälv T, Middleberg JJ (2016) Food selectivity and processing by the cold-water coral Lophelia pertusa. Biogeosciences 13:5789–5798

    Article  CAS  Google Scholar 

  • Vanhaecke P, Sorgeloos P (1980) The biometrics of Artemia strains from different geographical origin. In: Persoone G, Sorgeloos P, Roels O, Jaspers E (eds) The brine shrimp Artemia, vol 3 Ecology, culturing, use in aquaculture. Universa Press, Wetteren, pp 393–405

    Google Scholar 

  • Van-Praët M (1985) Nutrition of sea anemones. Adv Mar Biol 22:65–99

    Article  Google Scholar 

  • Wagner D, Luck DG, Toonen RJ (2012) The biology and ecology of black corals (Cnidaria:Anthozoa: Hexacorallia: Antipatharia). Adv Mar Biol 63:67–132

    Article  PubMed  Google Scholar 

  • Wainwright SA, Dillon JR (1969) On the orientation of sea fans (genus Gorgonia). Bull Mar Sci 136:130–139

    Google Scholar 

  • Waite AM, Safi K, Hall JA, Nodder SD (2000) Mass sedimentation of picoplankton embedded in organic aggregates. Limnol Oceanogr 45:87–97

    Article  Google Scholar 

  • Walsh K, Haggerty JM, Doane MP et al (2017) Aura-biomes are present in the water layer above coral reef macro-organisms. Peer J 5:e3666

    Article  PubMed  PubMed Central  Google Scholar 

  • Warner GF (1981) Species descriptions and ecological observations of black corals (Antipatharia) from Trinidad. Bull Mar Sci 31:147–163

    Google Scholar 

  • Warner ME, LaJeunesse TC, Robison JD, Thur RM (2006) The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: potential implications for coral bleaching. Limnol Oceanogr 51:1887–1897

    Article  Google Scholar 

  • Watson GM, Mariscal RN (1983) The development of a sea anemone tentacle specialized for aggression: morphogenesis and regression of the catch tentacle of Haliplanella luciae (Cnidaria:Anthozoa). Biol Bull 164:506–517

    Article  Google Scholar 

  • Wheeler AJ, Beyer A, Freiwald A et al (2007) Morphology and environment of cold-water coral carbonate mounds on the NW European margin. Int J Earth Sci 96:37–56

    Article  CAS  Google Scholar 

  • Widdig A, Schlichter D (2001) Phytoplankton: a significant trophic source for soft corals? Helgoland Mar Res 55:198–211

    Article  Google Scholar 

  • Wiedenmann J, D’Angelo CD, Smith EG et al (2012) Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat Clim Chang 3:160–164

    Article  CAS  Google Scholar 

  • Wijgerde T, Diantari R, Lewaru MW et al (2011) Extracoelenteric zooplankton feeding is the key mechanism of nutrient acquisition for the scleractinian coral Galaxea fascicularis. J Exp Biol 214:3351–3357

    Article  PubMed  CAS  Google Scholar 

  • Wijgerde T, Spijkers P, Karruppannan E et al (2012) Water flow affects zooplankton feeding by the scleractinian coral Galaxea fascicularis on a polyp and colony level. J Mar Biol 854489 https://doi.org/10.1155/2012/854849

  • Wild C, Huettel M, Klueter A et al (2004a) Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66–70

    Article  PubMed  CAS  Google Scholar 

  • Wild C, Rasheed MY, Werner U et al (2004b) Degradation and mineralization of coral mucus in reef environments. Mar Ecol Prog Ser 267:159–171

    Article  Google Scholar 

  • Wild C, Woyt H, Huettel M (2005) Influence of coral mucus on nutrient fluxes in carbonate sands. Mar Ecol Prog Ser 287:87–98

    Article  CAS  Google Scholar 

  • Wild C, Mayr C, Wehrmann L et al (2008) Organic matter release by cold-water corals and its implications for fauna-microbe interaction. Mar Ecol Prog Ser 272:67–75

    Article  CAS  Google Scholar 

  • Wild C, Naumann MS, Haas A (2010a) Organic matter release by Red Sea coral reef organisms- potential effects on microbial activity and in situ O2 availability. Mar Ecol Prog Ser 411:61–71

    Article  CAS  Google Scholar 

  • Wild C, Naumann M, Niggl W, Haas A (2010b) Composition of mucus released by scleractinian warm- and cold-water reef corals. Aquat Biol 10:41–45

    Article  Google Scholar 

  • Williams B, Grottoli AG (2010) Stable nitrogen and carbon isotope (δ15N and δ13C) variability in shallow tropical Pacific soft coral and black coral taxa and implications for paleoceanographic reconstructions. Geochim Cosmochim Acta 74:5280–5288

    Google Scholar 

  • Wilson SK, Bellwood DR, Choat HJ, Furnas MJ (2003) Detritus in the epilithic algal matrix and its use by coral reef fishes. Oceanogr Mar Biol Annu Rev 41:279–309

    Google Scholar 

  • Wooldridge SA (2017) Excess seawater nutrients, enlarged algal symbiont densities and bleaching sensitive reef locations: 1. Identifying thresholds of concern for the Great Barrier Reef, Australia. Mar Pollut Bull 114:343–354

    Article  PubMed  CAS  Google Scholar 

  • Work T, Meteyer C (2014) To understand coral disease, look at coral cells. Ecohealth 11:610–618

    Article  PubMed  Google Scholar 

  • Wotton RS, Malmqvist B (2001) Feces in aquatic ecosystems: feeding animals transform organic matter into fecal pellets, which sink or are transported horizontally by currents; these fluxes relocate organic matter in aquatic ecosystems. BioScience 51:537–544

    Article  Google Scholar 

  • Wyatt ASJ, Lowe RJ, Humphries S, Waite AM (2010) Particulate nutrient fluxes over a fringing coral reef: relevant scales of phytoplankton production and mechanisms of supply. Mar Ecol Prog Ser 405:113–130

    Article  CAS  Google Scholar 

  • Wyatt ASJ, Lowe RJ, Humphries S, Waite AM (2013) Particulate nutrient fluxes over a fringing reef: source-sink dynamics inferred from carbon to nitrogen ratios and stable isotopes. Limnol Oceanogr 58:409–427

    Article  CAS  Google Scholar 

  • Yahel R, Yahel G, Genin A (2005) Near-bottom depletion of zooplankton over coral reefs: I: diurnal dynamics and size distribution. Coral Reefs 24:75–85

    Article  Google Scholar 

  • Yamamuro M, Kayanne H, Minagawa M (1995) Carbon and nitrogen stable isotopes of primary producers in coral reef ecosystems. Limnol Oceanogr 40:617–621

    Article  CAS  Google Scholar 

  • Yamashiro H, Oku H, Higa H et al (1999) Composition of lipids, fatty acids and sterols in Okinawan corals. Comp Biochem Physiol B 122:397–407

    Article  Google Scholar 

  • Yellowlees D, Rees TAV, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31:679–694

    Article  PubMed  CAS  Google Scholar 

  • Yoffe C, Lotan Y, Benayahu Y (2012) A modified view on octocorals: Heteroxenia fuscesans nematocysts are diverse, featuring both an ancestral and a novel type. PLoS One 7(2):e31902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yonge CM (1930a) Studies on the physiology of corals 3. Assimilation and excretion. British Mus Nat Hist Gt Barrier Reef Exped 1928–1929 Sci Repts 1:83–92

    Google Scholar 

  • Yonge CM (1930b) Studies on the physiology of corals 1. Feeding mechanisms and food. British Mus Nat Hist Gt Barrier Reef Exped 1928–1929 Sci Repts 1:13–57

    Google Scholar 

  • Zetsche E-M, Baussant T, Meysman FJR, van Oevelen D (2016) Direct visualization of mucus production by the cold-water coral Lophelia pertusa with digital holographic microscopy. PLoS One 11:e0146766. https://doi.org/10.1371/journal.pone.0146766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter M. Goldberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goldberg, W.M. (2018). Coral Food, Feeding, Nutrition, and Secretion: A Review. In: Kloc, M., Kubiak, J. (eds) Marine Organisms as Model Systems in Biology and Medicine. Results and Problems in Cell Differentiation, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-92486-1_18

Download citation

Publish with us

Policies and ethics