Skip to main content

Solitary Ascidians as Model Organisms in Regenerative Biology Studies

  • Chapter
  • First Online:
Marine Organisms as Model Systems in Biology and Medicine

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 65))

Abstract

Regeneration, the process of replacing lost or damaged body parts, has long captured human imagination and is a key feature among all animal phyla. Due to their close phylogenetic relationship to vertebrates and their high regenerative abilities, ascidians (Chordata, Ascidiacea) are often used as models to shed light on the cellular and genetic process involved in tissue regeneration. Surprisingly, ascidian regeneration studies are based on only a few model species. In this chapter, we point out the important potential of solitary ascidians in regenerative and stem cell studies. We review recent studies of regeneration among solitary ascidians and discuss the cellular mechanism of tissue regeneration and the possible involvement of circulating cells in these processes. New data regarding the relationship between age and regeneration abilities of the solitary ascidian Polycarpa mytiligera (Stolidobranchia, Styelidae) are presented. The unique regeneration abilities found in P. mytiligera following evisceration of its digestive system and following amputation of its neural complex and siphon-associated structures and nerves imply on its potential to serve as a novel model system for understanding tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agata K, Watanabe K (1999) Molecular and cellular aspects of planarian regeneration. Semin Cell Dev Biol 10:377–383

    Article  PubMed  CAS  Google Scholar 

  • Anchelin M, Murcia L, Alcaraz-Pérez F, García-Navarro EM, Cayuela ML (2011) Behaviour of telomere and telomerase during aging and regeneration in zebrafish. PLoS One 6(2):e16955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Auger H, Sasakura Y, Joly JS, Jeffery WR (2010) Regeneration of oral siphon pigment organs in the ascidian Ciona intestinalis. Dev Biol 339(2):374–389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Azevedo AS, Grotek B, Jacinto A, Weidinger G (2011) The regenerative capacity of the zebrafish caudal fin is not affected by repeated amputations. PLoS One 6(7):e22820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bely AE (2006) Distribution of segment regeneration ability in the Annelida. Integr Comp Biol 46(4):508–518

    Article  PubMed  Google Scholar 

  • Bely AE (2010) Evolutionary loss of animal regeneration: pattern and process. Integr Comp Biol 50(4):515–527

    Article  PubMed  Google Scholar 

  • Bely AE, Nyberg KG (2010) Evolution of animal regeneration: re-emergence of a field. Trends Ecol Evol 25(3):161–170

    Article  PubMed  Google Scholar 

  • Berrill NJ (1951) Regeneration and budding in tunicates. Biol Rev Camb Philos Soc 26:456–475

    Article  Google Scholar 

  • Brockes JP, Kumar A (2005) Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science 310:1919–1923

    Article  PubMed  CAS  Google Scholar 

  • Brockes JP, Kumar A, Velloso CP (2001) Regeneration as an evolutionary variable. J Anat 199:3–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown FD, Keeling EL, Le AD, Swalla BJ (2009) Whole body regeneration in a colonial ascidian, Botrylloides violaceus. J Exp Zool B Mol Dev Evol 312:885–900

    Article  PubMed  CAS  Google Scholar 

  • Bryder D, Rossi DJ, Weissman IL (2006) Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol 169:338–346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carlson BM (2007) Principles of regenerative biology. Academic Press, San Diego, CA

    Google Scholar 

  • Carnevali M, Burighel P (2010) Regeneration in echinoderms and ascidians. eLS. https://doi.org/10.1002/9780470015902.a0022102

  • Chen YT, Dai CF (1998) Sexual Reproduction of the Ascidian Polycarpa cryptocarpa kroboja from the Northern Coast of Taiwan. Acta Oceanogr Taiwanica 37(2):195–204

    Google Scholar 

  • Chen CH, Poss KD (2017) Regeneration genetics. Annu Rev Genet 51:63–82

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cohen A, Berrill NJ (1936) The development of isolated blastomeres of the ascidian egg. J Exp Zool 74:91–117

    Article  Google Scholar 

  • Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H (1998) A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 12(23):3715–3727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cox DN, Chao A, Lin H (2000) piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development 127:503–514

    PubMed  CAS  Google Scholar 

  • Dahlberg C, Auger H, Dupont S, Sasakura Y, Thorndyke M, Joly JS (2009) Refining the Ciona intestinalis model of central nervous system regeneration. PLoS One 4(2):e4458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dalby JE Jr (1989) Predation of ascidians by Melongena corona (Neogastropoda: Melongenidae) in the northern Gulf of Mexico. Bull Mar Sci 45:708–712

    Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439(7079):965–968

    Article  PubMed  CAS  Google Scholar 

  • Delsuc F, Tsagkogeorga G, Lartillot N, Philippe H (2008) Additional molecular support for the new chordate phylogeny. Genesis 46(11):592–604

    Article  PubMed  Google Scholar 

  • Egger B, Ladurner P, Nimeth K, Gschwentner R, Rieger R (2006) The regeneration capacity of the flatworm Macrostomum lignano—on repeated regeneration, rejuvenation, and the minimal size needed for regeneration. Dev Genes Evol 216(10):565–577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eguchi G, Abe SI, Watanabe K (1974) Differentiation of lens-like structures from newt iris epithelial cells in vitro. Proc Natl Acad Sci USA 71(12):5052–5056

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Eguchi G, Eguchi Y, Nakamura K, Yadav MC, Millán JL, Tsonis PA (2011) Regenerative capacity in newts is not altered by repeated regeneration and ageing. Nat Commun 2:384

    Article  PubMed  CAS  Google Scholar 

  • Emson R, Wilkie I (1980) Fission and autotomy in echinoderms. Oceanogr Mar Biol Ann Rev 18:155–250

    Google Scholar 

  • Epelbaum A, Pearce CM, Therriault TW (2009) A case of atrial siphon duplication in Styela clava (Tunicata: Ascidiacea). Mar Biodivers Rec 2:e32

    Article  Google Scholar 

  • Fei JF, Schuez M, Tazaki A, Taniguchi Y, Roensch K, Tanaka EM (2014) CRISPR-mediated genomic deletion of Sox2 in the axolotl shows a requirement in spinal cord neural stem cell amplification during tail regeneration. Stem Cell Rep 3:444–459

    Article  CAS  Google Scholar 

  • Fisher TR (1976) Oxygen uptake of the solitary tunicate Styela plicata. Biol Bull 151(2):297–305

    Article  PubMed  Google Scholar 

  • Freeman G (1964) The role of blood cells in the process of asexual reproduction in the tunicate Perophora viridis. J Exp Zool 156(2):157–183

    Article  PubMed  CAS  Google Scholar 

  • Fujita H, Nanba H (1971) Fine structure and its functional properties of the endostyle of ascidians, Ciona intestinalis. Z Zellforsch Mikrosk Anat 121(4):455–469

    Article  PubMed  CAS  Google Scholar 

  • García-Arrarás JE, Estrada-Rodgers L, Santiago R, Torres II, Díaz-Miranda L, Torres-Avillán I (1998) Cellular mechanisms of intestine regeneration in the sea cucumber, Holothuria glaberrima Selenka (Holothuroidea: Echinodermata). J Exp Zool 281(4):288–304

    Article  PubMed  Google Scholar 

  • Giangrande A, Licciano M (2014) Regeneration and clonality in Metazoa. The price to pay for evolving complexity. Invertebr Reprod Dev 58(1):1–8

    Article  Google Scholar 

  • Gierer A, Berking S, Bode H, David C, Flick K, Hansmann G, Schaller H, Trenkner E (1972) Regeneration of hydra from reaggregated cells. Nat New Biol 239:98–101

    Article  PubMed  CAS  Google Scholar 

  • Gordon T (2016) Ecology and biology of the solitary ascidian Polycarpa mytiligera in the Red sea. MSc thesis, Tel-Aviv University

    Google Scholar 

  • Goss RJ (1969) Principles of regeneration. Academic Press, New York

    Google Scholar 

  • Goss RJ (1992) The evolution of regeneration: adaptive or inherent? J Theor Biol 159(2):241–260

    Article  PubMed  CAS  Google Scholar 

  • Grillo M, Konstantinides N, Averof M (2016) Old questions, new models: unraveling complex organ regeneration with new experimental approaches. Curr Opin Genet Dev 40:23–31

    Article  PubMed  CAS  Google Scholar 

  • Gulliksen B, Skjæveland SH (1973) The sea-star, Asterias rubens (L.), as predator on the ascidian, Ciona intestinalis (L.) in Borgenfjorden, North-Tröndelag, Norway. Sarsia 52:15–20

    Article  Google Scholar 

  • Gurley KA, Sánchez Alvarado A (2008) Stem cells in animal models of regeneration. In: StemBook (ed) The stem cell research community. Harvard Stem Cell Institute, Cambridge, MA

    Google Scholar 

  • Gutierrez S, Brown FD (2017) Vascular budding in Symplegma brakenhielmi and the evolution of coloniality in styelid ascidians. Dev Biol 423(2):152–169

    Article  PubMed  CAS  Google Scholar 

  • Hamada M, Goricki S, Byerly MS, Satoh N, Jeffery WR (2015) Evolution of the chordate regeneration blastema: differential gene expression and conserved role of notch signaling during siphon regeneration in the ascidian Ciona. Dev Biol 405(2):304–315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirschler J (1914) Ãœber die Restitutions-und Involutionsvoränge bei operierten Exemplaren von Ciona intestinalis Flem. (Teil I) nebst Bemurkungen über den Wert des Negativen für das Potenzproblem. Arch Mikrosk Anat 85:205–227

    Article  Google Scholar 

  • Jeffery WR (2001) Determinants of cell and positional fate in ascidian embryos. Int Rev Cytol 203:3–62

    Article  PubMed  CAS  Google Scholar 

  • Jeffery WR (2012) Siphon regeneration capacity is compromised during aging in the ascidian Ciona intestinalis. Mech Ageing Dev 133(9):629–636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeffery WR (2014) The tunicate Ciona: a model system for understanding the relationship between regeneration and aging. Invertebr Reprod Dev 59:17–22

    Article  PubMed Central  Google Scholar 

  • Jeffery WR (2015a) Closing the wounds: one hundred and twenty-five years of regenerative biology in the ascidian Ciona intestinalis. Genes 53:48–65

    Article  Google Scholar 

  • Jeffery WR (2015b) Distal regeneration involves the age dependent activity of branchial sac stem cells in the ascidian Ciona intestinalis. Regeneration 2:1–18

    Article  PubMed  CAS  Google Scholar 

  • Jeffery WR (2015c) Chapter seven-regeneration, stem cells, and aging in the tunicate Ciona: insights from the oral siphon. Int Rev Cell Mol Biol 319:255–282

    Article  PubMed  Google Scholar 

  • Kaneko N, Katsuyama Y, Kawamura K, Fujiwara S (2010) Regeneration of the gut requires retinoic acid in the budding ascidian Polyandrocarpa misakiensis. Develop Growth Differ 52(5):457–468

    Article  CAS  Google Scholar 

  • Kawamura K, Sunanaga T (2010) Hemoblasts in colonial tunicates: are they stem cells or tissue restricted progenitor cells? Develop Growth Differ 52(1):69–76

    Article  Google Scholar 

  • Kawamura K, Sugino Y, Sunanaga T, Fujiwara S (2008) Multipotent epithelial cells in the process of regeneration and asexual reproduction in colonial tunicates. Develop Growth Differ 50:1–11

    Article  CAS  Google Scholar 

  • Koplovitz G, Shenkar N (2014) The Biodiversity of the Class Ascidiacea in the Gulf of Eilat (Aqaba). Israel Taxonomy Initiative Report. http://taxonomy.tau.ac.il/eng/content/biodiversity-survey-results

  • Kott P (1985) The Australian Ascidiacea. Part. I: Phlebobranchia and Stolidobranchia. Mem Qd Mus 23:1–440

    Google Scholar 

  • Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka EM (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460(7251):60–65

    Article  PubMed  CAS  Google Scholar 

  • Lambert CC (2005) Historical introduction, overview, and reproductive biology of the protochordates. Can J Zool 83(1):1–7

    Article  Google Scholar 

  • Lenhoff SG, Lenhoff HM (1986) Hydra and the birth of experimental biology, 1744: Abraham Trembley’s memoirs concerning the natural history of a type of freshwater polyp with arms shaped like horns. Boxwood Press, Pacific Grove

    Google Scholar 

  • Lindsay SM (2010) Frequency of injury and the ecology of regeneration in marine benthic invertebrates. Integr Comp Biol 50(4):479–493

    Article  PubMed  Google Scholar 

  • Mackie GO, Burighel P (2005) The nervous system in adult tunicates: current research directions. Can J Zool 83(1):151–183

    Article  CAS  Google Scholar 

  • Mashanov VS, García-Arrarás JE (2011) Gut regeneration in holothurians: a snapshot of recent developments. Biol Bull 221(1):93–109

    Article  PubMed  CAS  Google Scholar 

  • Mashanov VS, Dolmatov IY, Heinzeller T (2005) Transdifferentiation in holothurian gut regeneration. Biol Bull 209(3):184–193

    Article  PubMed  Google Scholar 

  • McCusker C, Bryant SV, Gardiner DM (2015) The axolotl limb blastema: cellular and molecular mechanisms driving blastema formation and limb regeneration in tetrapods. Regeneration 2(2):54–71

    Article  PubMed  PubMed Central  Google Scholar 

  • Medina BN, Santos de Abreu I, Cavalcante LA, Silva WA, da Fonseca RN, Allodi S (2015) 3-acetylpyridine induced degeneration in the adult ascidian neural complex: reactive and regenerative changes in glia and blood cells. Dev Neurobiol 75(8):877–893

    Article  PubMed  CAS  Google Scholar 

  • Millar RH (1962) The breeding and development of the ascidian Polycarpa tinctor. Q J Microsc Sci 103:399–403

    Google Scholar 

  • Millar RH (1971) The biology of ascidians. Adv Mar Biol 9:1–100

    Article  Google Scholar 

  • Mingazzini P (1891) Sulla rigenerazione nei Tunicati. Boll Dell Soc Natur Napoli 5:76–79

    Google Scholar 

  • Monniot C, Monniot F, Laboute P (1991) Coral reef ascidians of New Caledonia. Orstom, Paris

    Google Scholar 

  • Noda K (1971) Reconstitution of dissociated cells of hydra. Zool Mag 80:99–101

    Google Scholar 

  • Pérez-Portela R, Turon X (2007) Prey preferences of the polyclad flatworm Prostheceraeus roseus among Mediterranean species of the ascidian genus Pycnoclavella. Hydrobiologia 592:535−539

    Article  Google Scholar 

  • Pérez-Portela R, Bishop JD, Davis AR, Turon X (2009) Phylogeny of the families Pyuridae and Styelidae (Stolidobranchiata, Ascidiacea) inferred from mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 50:560–570

    Article  PubMed  CAS  Google Scholar 

  • Pestarino M, Fiala Medioni A, Ravera F (1988) Ultrastructure of the branchial wall of a lower chordate: the ascidian Ciona intestinalis. J Morphol 197(3):269–276

    Article  PubMed  Google Scholar 

  • Poss KD (2010) Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet 11(10):710–722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reddien PW, Tanaka EM (2016) Editorial overview: Cell reprogramming, regeneration and repair. Curr Opin Genet Dev 40:iv–vi

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Alvarado A (2000) Regeneration in the metazoans: why does it happen? Bioessays 22(6):578–590

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Alvarado A, Tsonis PA (2006) Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Genet 7(11):873–884

    Article  PubMed  CAS  Google Scholar 

  • Satoh N (1994) Developmental biology of Ascidians. Cambridge University Press, Cambridge

    Google Scholar 

  • Selys-Longchamps MD (1915) Autotomie et régénération des viscères chez Polycarpa tenera Lacaze et Delage. C R Acad Sci Paris 160:566–569

    Google Scholar 

  • Shenkar N, Gordon T (2015) Gut-spilling in chordates: evisceration in the tropical ascidian Polycarpa mytiligera. Sci Rep 5:9614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shenkar N, Swalla BJ (2011) Global diversity of Ascidiacea. PLoS One 6. https://doi.org/10.1038/srep09614

  • Shenkar N, Koplovitz G, Dray L, Gissi C, Huchon D (2016) Back to solitude: Solving the phylogenetic position of the Diazonidae using molecular and developmental characters. Mol Phylogenet Evol 100:51–56

    Article  PubMed  Google Scholar 

  • Shenkar N, Gittenberger A, Lambert G, Rius M, Moreira Da Rocha R, Swalla B J, Turron X (2017) Ascidiacea World Database. http://www.marinespecies.org/ascidiacea

  • Shukalyuk AI, Dolmatov IY (2001) Regeneration of the digestive tube in the Holothurian Apostichopus japonicus after Evisceration. Biol Morya 27(3):168–173

    Google Scholar 

  • Sugino YM, Matsumura M, Kawamura K (2007) Body muscle-cell differentiation from coelomic stem cells in colonial tunicates. Zool Sci 24(6):542–546

    Article  Google Scholar 

  • Swan EF (1961) Seasonal evisceration in the sea cucumber, Parastichopus californicus (Stimpson). Science 133:1078–1079

    Article  PubMed  CAS  Google Scholar 

  • Tanaka EM (2016) The molecular and cellular choreography of appendage regeneration. Cell 165(7):1598–1608

    Article  PubMed  CAS  Google Scholar 

  • Tanaka EM, Reddien PW (2011) The cellular basis for animal regeneration. Dev Cell 21:172–185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Technau U, Cramer von Laue C, Rentzsch F, Luft S, Hobmayer B, Bode HR, Holstein TW (2000) Parameters of self-organization in Hydra aggregates. Proc Natl Acad Sci USA 97:12127–12131

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tiozzo S, Brown FD, De Tomaso AW (2008) Regeneration and stem cells in ascidians. In: Bosch TCG (ed) Stem cells from hydra to man. Springer, New York, pp 95–112

    Google Scholar 

  • Tokioka T (1970) Ascidians from Mindoro Island, The Philippines. Seto Mar Biol Lab 18(2):75–107

    Google Scholar 

  • Tsonis PA (2000) Regeneration in vertebrates. Dev Biol 221(2):273–284

    Article  PubMed  CAS  Google Scholar 

  • Von Haffner K (1933) Die überzaähligen Siphon und Ocellen von Ciona intestinalis L. (Experimentellmorpholosiche Untersunchungen). Z Wiss Zool 143:16–52

    Google Scholar 

  • Voskoboynik A, Simon-Blecher N, Soen Y, Rinkevich B, De Tomaso AW, Ishizuka KJ, Weissman IL (2007) Striving for normality: whole body regeneration through a series of abnormal generations. FASEB J 21(7):1335–1344

    Article  PubMed  CAS  Google Scholar 

  • Voskoboynik A, Soen Y, Rinkevich Y, Rosner A, Ueno H, Reshef R, Ishizuka KJ, Palmeri KJ, Moiseeva E, Rinkevich B, Weissman IL (2008) Identification of the endostyle as a stem cell niche in a colonial chordate. Cell Stem Cell 3(4):456–464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wagner DE, Wang IE, Reddien PW (2011) Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332:811–816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu Z, Ghosh-Roy A, Yanik MF, Zhang JZ, Jin Y, Chisholm AD (2007) Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching. Proc Natl Acad Sci USA 104(38):15132–15137

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yoshida K, Hozumi A, Treen N, Sakuma T, Yamamoto T, Shirae-Kurabayashi M, Sasakura Y (2017) Germ cell regeneration-mediated, enhanced mutagenesis in the ascidian Ciona intestinalis reveals flexible germ cell formation from different somatic cells. Dev Biol 423(2):111–125

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tal Gordon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gordon, T., Shenkar, N. (2018). Solitary Ascidians as Model Organisms in Regenerative Biology Studies. In: Kloc, M., Kubiak, J. (eds) Marine Organisms as Model Systems in Biology and Medicine. Results and Problems in Cell Differentiation, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-92486-1_15

Download citation

Publish with us

Policies and ethics