Skip to main content

Methods of Qualitative and Quantitative Analysis of Plant Constituents

  • Chapter
  • First Online:
Therapeutic Use of Medicinal Plants and their Extracts: Volume 2

Part of the book series: Progress in Drug Research ((PDR,volume 74))

Abstract

Plant kingdom harbors an inexhaustible source of active drug ingredients. Phytochemical techniques plays a significant role in searching raw materials and resources for pharmaceutical industry. Drug discovery is a lengthy procedure and it involves a number of successive processes including (i) extraction, (ii) separation, (iii) isolation of the constituents of interest, (iv) purification, (v) characterization, and (vi) identification of the isolated compounds and also their quantitative estimation. Both dried and fresh plant materials may be used for extraction following different procedures with (water, ether, acetone, methanol, ethanol, chloroform, etc.) or without (expression, sublimation, and distillation) the use of solvents. Extraction with water may be without (infusion) or with boiling (decoction) and extraction with organic solvents involves maceration, percolation, soxhlet extraction, etc. Phytochemical screening of crude extract can be performed with the appropriate tests for different active ingredients, e.g., alkaloids (Dragendorff, Mayer, Hager, and Wagner’s spot test), tannins (Ferric chloride test), Anthraquinone (Borntrager’s test), flavonoids (Shinoda test-HCL test and Lead acetate test), glycosides (Fehling’s test and Glacial acetic acid test), Cardiac glycosides (Kellar–Kiliani test), terpenoids and steroids (H2SO4 test), saponins (Foam test), fixed oil (Spot test), Amino acids and proteins (Ninhydrin test and copper sulfate test) and terpenes (Liberman–Burchard), steroid (Liebermann–Burchard test), phenol (phenol test), and tannins (Braemer’s test), etc. High-Throughput Screening (HTS) is a recent approach to accelerated drug discovery (e.g., screening a few thousand compounds per day or per week) and consists of several steps such as target identification, reagent preparation, compound management, assay development and high-throughput library screening including combinatorial chemistry, genomics, protein, and peptide libraries. The HTS method is more frequently utilized in conjunction with analytical techniques such as NMR or coupled methods, e.g., LC-MS/MS. The extracted chemical constituents are separated by various separation techniques such as fractional distillation, fractional liberation, fractional crystallization, chromatography, HPLC, etc. Isolation is a crucial step in the analysis of medicinal plants and the basic operation included steps, such as prewashing, drying of plant materials or freeze drying, grinding to obtain a homogenous sample and often improving the kinetics of analytic extraction and also increasing the contact of sample surface with the solvent system. Phytochemical characterization primarily may be initiated with the help of qualitative tests for the screening of phytochemical compounds. Characterization and identification of the separated and isolated constituents are the final steps in the photochemical analysis of plants. A pure compound is characterized and identified by determining its various physical and chemical properties like Rf value, melting point, optical values, nature and type of crystals, types and number of elements and functional groups present in the molecule, etc., by the use of different chemical tests and reactions, chromatographic techniques, crystallographic and spectroscopic methods, etc. The pure compounds are further used for the determination of structure and biological activity. In addition, various non-chromatographic techniques (immunoassay—MAbs, phytochemical screening assay, and FTIR) can also be used to facilitate the identification of the bioactive compounds. Bioassay (brine shrimp toxicity assay, crown gall tumor inhibition assay, potato disc antitumor assay-PDA, animal toxicity assay, antiviral, antimicrobial and antifungal assays, antimitotic assay, etc.) is a life-based activity-directed isolation process and its goal is to isolate bioactive compounds with certain definite degree of LD/LC/IC50 value as a proof of cytotoxicity. Polymerase chain reaction (PCR)-based DNA technology of molecular biology now appears to be the basic analytical procedure in molecular pharmacognosy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar MS, Athar MA, Yaqub M (1981) Effect of Momordica charantia on blood glucose levels of normal and alloxan diabetic rabbits. Planta Med 42:205–212

    Article  CAS  PubMed  Google Scholar 

  • Amarasingham RD, Bisset NG, Millard AH, Woods MC (1964) A phytochemical survey of Malaya III. Alkaloids and saponins. Econ Bot 18:270–278

    Article  CAS  Google Scholar 

  • Aplin TEH, Cannon JR (1971) Distribution of alkaloids in some western Australian plants. Eco Bot 25(4):366–380

    Article  CAS  Google Scholar 

  • Aquino R, De Feo V, De Simone F, Pizza C, Cirino G (1991) Plant metabolites. New compounds and anti-inflammatory activity of Uncaria tomentosa. J Nat Prod 54(2):453–459

    Article  CAS  PubMed  Google Scholar 

  • Eberhardt TL, Li X, Shupe TF, Hse CY (2007) Chinese Tallow Tree (Sapium sebiferum) utilization: characterization of extractives and cell-wall chemistry. Wood Fiber Sci 39:319–324

    CAS  Google Scholar 

  • Einhelling FA, Leather GR, Hobbs LL (1985) Use of Lemna minor L. as a bioassay in allelopathy. J Chem Ecol 11(1):65–72

    Article  Google Scholar 

  • Farnsworth NR, Soejarto DD (1991) Global importance of medicinal plants. In: Akerele O, Heywood V, Synge H (eds) The conservation of medicinal plants. Cambridge University Press, Cambridge, UK, pp 25–51

    Chapter  Google Scholar 

  • Ferrigni NR, Putman JE, Anderson B, Jacobsen LB, Nichols DE, Moore DS et al (1982) Modification and evaluation of the potato disc assay and antitumor screening of Euphorbiaceae seeds. J Nat Prod 45:679–686

    Article  CAS  PubMed  Google Scholar 

  • Fings CS, Tatliff CR, Dunn RT (1970) Glucose determination by o-toluidine method using acetic acid, ‘Clinical Chemistry’ by Toro C, Ackerman PG, vol 115. Little Browning and Company, Boston

    Google Scholar 

  • Goldstein A (1964) Bio-statistics, an introductory text. McMillan Co., New York, USA, pp 172–178

    Google Scholar 

  • Hamburger MO, Cordell GA (1987) A direct bioautographic TLC assay for compounds possessing antibacterial activity. J Nat Prod 50(1):19–22

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB (1984) Phytochemical methods: a guide to modern techniques of plant analysis, 2nd edn. Chapman and Hall ltd., London, New York, p 1984

    Book  Google Scholar 

  • Hazra KM, Roy RN, Sen SK, Laska S (2007) Isolation of antibacterial pentahydroxy flavones from the seeds of Mimusops elengi Linn. Afr J Biotechnol 6(12):1446–1449

    CAS  Google Scholar 

  • Holstege DM, Seiber JN, Galey FD (1995) Rapid multiresidue screen for alkaloids in plant material and biological samples. J Agric Food Chem 43:691–699

    Article  CAS  Google Scholar 

  • Hostettmann K, Kizu H, Tomimori T (1982) Molluscicidal properties of various saponins. Planta Med 44:34–35

    Article  CAS  PubMed  Google Scholar 

  • Jacobs RS, White S, Wilson L (1981) Selective compounds derived from marine organisms: effects on cell division in fertilized sea urchin eggs. Fed Proc 39:26–29

    Google Scholar 

  • Kavanagh F (1963) Analytical microbiology. In: Kavanagh F (ed) Academic Press, London, pp 125–141

    Chapter  Google Scholar 

  • Kawashima K, Miwa Y, Kimura M, Mizutani K, Hayashi A, Tanaka O (1985) Diuretic action of paeonol. Planta Med 3:187–189

    Article  Google Scholar 

  • Kawazu K (1981) Advances in natural products chemistry. In: Natori S, Itekawa N, Suzuki M, (eds) Wiley, New York, p 249

    Google Scholar 

  • Kazmi SU, Siddiqui R, Shekhani S (1990) Frontiers in natural products chemistry. In: Atta-ur-Rahman (ed), Shamim Printing Press, Karachi, pp 739–754

    Google Scholar 

  • Kumari S, Yasmin N, Hussain MR, Babuselvam M (2015) In vitro anti-inflammatory and anti-arthritic property of Rhizopora mucronata leaves. IJPSR 6:482–485

    CAS  Google Scholar 

  • Leelaprakash G, Dass SM (2011) In vitro anti-Inflammatory activity of methanol extract of Enicostemma Axillare. Int J Drug Dev Res 3(3):189–196

    Google Scholar 

  • Leven M, Vanden Berghe DA, Mertens F, Vlietinck A, Lammens E (1979) Screening of higher plants for biological activities. I. Antimicrobial activity. Planta Medica 36(4):311–321

    Article  Google Scholar 

  • McLaughlin JL (1991). Methods of Plant Biochemistry. In: Hostettmann K (ed) vol. 6. Academic Press, London, pp 1–32

    Google Scholar 

  • Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL (1982) Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med 45:31–34

    Article  CAS  PubMed  Google Scholar 

  • Mizushima Y, Kobayashi M (1968) Interaction ofanti-inflammatory drugs with serum preoteins, especially with some biologically active proteins. J Pharma Pharmacol 20:169–173

    Article  CAS  Google Scholar 

  • Rahman AU, Choudhary MI, Thomson WJ (2001) Bioassay techniques for drug development. Harwood academic publishers, Australia, Canada, France, Germany

    Book  Google Scholar 

  • Sakat S, Juvekar AR, Gambhire MN (2010) In vitro antioxidant and anti-inflammatory activity ofmethanol extract of Oxalis corniculata Linn. Int J Pharma Pharmacol Sci 2(1):146–155

    Google Scholar 

  • Schales O, Schales SS (1941) A simple and accurate method for the determination of chloride in biological fluids. J Biol Chem 140:879–884

    CAS  Google Scholar 

  • Shoyama Y, Tanaka H, Fukuda N (2003) Monoclonal antibodies against naturally occurring bioactive compounds. Cytotechnology 31:9–27

    Article  Google Scholar 

  • Snedecor GW (1965) Statistical methods, 5th edn. The Iowa State University Press, Ames, Iowa, USA

    Google Scholar 

  • Srivastava OP (1984) Techniques for the evaluation of antimicrobial properties of natural products. In: Dhawan BN, Srimal RC (eds) The use of pharmacological techniques for the evaluation of natural products. UNESCO, New Delhi, pp 72–79

    Google Scholar 

  • Webb LJ (1949) An Australian phytochemical survey.1. Alkaloids and cyanogenic compounds in Queensland plants. CSIRO Bull. 260, Melbourne

    Google Scholar 

  • White SJ, Jacobs RS (1981) Inhibition of cell division and of microtubule assembly by elatone, a halogenated sesquiterpene. Mol Pharmacol 20:614–620

    PubMed  CAS  Google Scholar 

  • Zarroug MA, Nugud AD, Bashir AK, Mageed AA (1988) Evaluation of Sudanese plant extracts as mosquito larvicides. Int J Crude Drug Res 26:77–80

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. M. Alamgir .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alamgir, A.N.M. (2018). Methods of Qualitative and Quantitative Analysis of Plant Constituents. In: Therapeutic Use of Medicinal Plants and their Extracts: Volume 2. Progress in Drug Research, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-319-92387-1_9

Download citation

Publish with us

Policies and ethics