Skip to main content

The Evolution of Farm Animal Biotechnology

  • Chapter
  • First Online:
Animal Biotechnology 1

Abstract

The domestication of farm animals starting 12,000–15,000 years ago in the Middle East was a seminal achievement in human development that laid the foundation of agriculture as it is known today. Initially, domesticated animals were selected according to phenotype and/or specific traits adapted to a local climate and production system. The science-based breeding systems used today originated with the introduction of statistical methods in the sixteenth century that made possible a quantitative approach to selective breeding for specific targeted traits. Now, with the availability of accurate and reliable DNA analysis, this quantitative approach has been extended to DNA-based breeding concepts that allow a more cost-effective but still quantitative determination of a genomic breeding value (GBV) for individual animals.

The impact of these developments was dramatically enhanced with the introduction of reproductive technologies extending the genetic influence of superior individual animals. The first of these was artificial insemination (AI) that started to be developed in the late nineteenth century. Industry uptake of AI was initially slow but increased dramatically following the development of semen extenders, the reduction of venereal disease risk by inclusion of antibiotics, and most significantly the development of effective freezing and cryostorage procedures in the mid-twentieth century. AI is now used in most livestock breeding enterprises, most notably by the dairy industry where more than 90% of dairy cattle are produced through AI in countries with modern breeding structures.

Embryo transfer (ET), a technology that for the first time allowed exploitation of the female genetic pool, was made possible through the major advances in the biological sciences in the later part of the twentieth century. Advances in understanding of the reproductive cycle and its hormonal control, the availability of purified gonadotropins, and improved cell and embryo culture procedures all played significant roles. ET is now being increasingly implemented in top end breeding endeavors, particularly in the top 1–2% of a given cattle population. But its real impact is yet to come as ET is the key enabler in the introduction of the next generation of enhanced breeding technologies. ET has already played a key role in advances such as in vitro production of embryos, sexing, cloning, and transgenesis. With the birth of “Dolly,” the cloned sheep, in 1996, a century-old dogma in biology, which inferred that a differentiated cell cannot be reprogrammed into a pluripotent stage, was abolished. Today, through recent developments in molecular cell biology, available protocols are efficient enough to allow commercial application of somatic cloning in the major farm animal species. This will not only further enhance the rate of genetic gain in herds and flocks but through the recent advent of precise genome editing tools allow the production of novel germlines for agricultural and biomedical purposes through the capacity to genetically modify farm animals with targeted modifications with high efficiency. This paves the way for the introduction of the precision breeding concepts needed to respond to future challenges in animal breeding, stemming from matching the demands of ongoing hyperbolic human population growth to the limited availability of arable land and environmental constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bavister BD (2002) Early history of in vitro fertilization. Reproduction 124:181–196

    Article  PubMed  CAS  Google Scholar 

  • Beja-Pereira A, Caramelli D, Lallueza-Fox C et al (2006) The origin of European cattle: evidence from modern and ancient DNA. Proc Natl Acad Sci U S A 103:8113–8118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Betteridge KJ (2003) A history of farm animal embryo transfer and some associated techniques. Anim Reprod Sci 79:203–244

    Article  PubMed  Google Scholar 

  • Biedl A, Peters H, Hofstätter R (1922) Experimentelle Studien über die Einnistung und Weiterentwicklung des Eies im Uterus. Z Geburtshilfe Gynäk 84:59–103

    Google Scholar 

  • Blasco A, Toro MA (2014) A short critical history of the application of genomics to animal breeding. Livest Sci 166:4–9

    Article  Google Scholar 

  • Brackett BG, Bousquet D, Boice ML, Donawick W, Evans JF, Dressel MA (1982) Normal development following in vitro fertilization in the cow. Biol Reprod 27:147–158

    Article  PubMed  CAS  Google Scholar 

  • Bradford MW, Bradley DG, Luikart G (2003) DNA markers reveal the complexity of livestock domestication. Nat Rev Genet 4:900–910

    Article  CAS  Google Scholar 

  • Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci U S A 38:455–463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campbell KHS, McWhir J, Ritchie WA et al (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66

    Article  PubMed  CAS  Google Scholar 

  • Carmichael RA (1980) History of international embryo transfer society I. Theriogenology 13:3–6

    Article  PubMed  CAS  Google Scholar 

  • Chang MC (1947) Normal development of fertilized rabbit ova stored at low temperature for several days. Nature 159:602–603

    Article  PubMed  CAS  Google Scholar 

  • Chang MC (1959) Fertilization of rabbit ova in vitro. Nature 179:466–467

    Article  Google Scholar 

  • Chang MC (1968) Reciprocal insemination and egg transfer between ferrets and mink. J Exp Zool 168:49–60

    Article  PubMed  CAS  Google Scholar 

  • Cheng WTK, Polge C, Moor RM (1986) In vitro fertilization of pig and sheep oocytes. Theriogenology 25:146 (abstr)

    Article  Google Scholar 

  • Cibelli J, Stice SL, Golueke PJ et al (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Comizzoli P, Holt WV (2014) Recent advances and prospects in germplasm preservation of rare and endangered species. Adv Exp Med Biol 753:331–356

    Article  PubMed  Google Scholar 

  • Comizzoli P, Mermillod P, Mauget R (2000) Reproductive biotechnologies for endangered mammalian species. Reprod Nutr Dev 40:493–504

    Article  PubMed  CAS  Google Scholar 

  • Connolly J, Colledge S, Dobney K et al (2011) Meta-analysis of zooarchaelogical data from SW Asia and SE Europe provides insight into the origins and spread of animal husbandry. J Archeol Sci 38:538–545

    Article  Google Scholar 

  • Cran DG, Johnson LA, Miller NGA, Cochrane D, Polge C (1993) Production of bovine calves following separation of X- and Y-chromosome bearing sperm and in vitro fertilization. Vet Rec 132:40–51

    Article  PubMed  CAS  Google Scholar 

  • Dekkers J (2004) Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. J Anim Sci 82(E.Suppl):E313–E328

    PubMed  Google Scholar 

  • Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418:700–707

    Article  PubMed  CAS  Google Scholar 

  • Edwards RG, Steptoe PC (1978) Birth after the reimplantation of a human embryo. Lancet312:366

    Google Scholar 

  • Edwards RG, Bavister BD, Steptoe PC (1969) Early stages of fertilization in vitro of human oocytes matured in vitro. Nature 221:632–635

    Article  PubMed  CAS  Google Scholar 

  • European Society of Human Reproduction (ESHRE) (2009) ART fact sheet. In: Embryology ESHRE. European Society of Human Reproduction (ESHRE), 2009

    Google Scholar 

  • Fekete E, Little CC (1942) Observations on the mammary tumor incidence of mice born from transferred ova. Cancer Res 2:525–530

    Google Scholar 

  • Foote RH (1996) Review: dairy cattle reproductive physiology research and management – past progress and future prospects. J Dairy Sci 79:980–990

    Article  PubMed  CAS  Google Scholar 

  • Foote RH, Bratton RW (1950) The fertility of bovine semen in extenders containing sulfanilamide, penicillin, streptomycin and polymyxin. J Dairy Sci 33(8):544–547

    Google Scholar 

  • Fukuda Y, Ichikawa M, Naito K, Toyoda Y (1990) Birth of normal calves resulting from bovine oocytes matured, fertilized, and cultured with cumulus cells in vitro up to the blastocyst stage. Biol Reprod 42:114–119

    Article  PubMed  CAS  Google Scholar 

  • García-Sancho M (2015) Animal breeding in the age of biotechnology: the investigative pathway behind the cloning of Dolly the sheep. HPLS 37:282–304

    Article  Google Scholar 

  • Garner DL, Seidel GE Jr (2008) History of commercializing sexed semen in cattle. Theriogenology 69:886–895

    Article  PubMed  CAS  Google Scholar 

  • Gerbault P, Allaby RG, Boivin N et al (2014) Storytelling and story testing in domestication. Proc Natl Acad Sci U S A 111:6159–6164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gianola D, Rosa GJM (2015) One hundred years of statistical developments in animal breeding. Annu Rev Anim Biosci 3:19–56

    Article  PubMed  Google Scholar 

  • Gonen S, Jenko J, Gorjanc G et al (2017) Potential of gene drives with genome editing to increase genetic gain in livestock breeding programs. Genet Sel Evol 49:3. https://doi.org/10.1186/s12711-016-0280-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Groenen MAM (2016) A decade of pig genome sequencing: a window on pig domestication and evolution. Genet Sel Evol 48:23. https://doi.org/10.1186/s12711-016-0204-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Groeneveld LF, Lenstra JA, Eding H et al (2010) Genetic diversity in farm animals – a review. Anim Genet 41:6–31

    Article  PubMed  Google Scholar 

  • Gurdon JB (1960) The developmental capacity of nuclei taken from differentiating endoderm cells of Xenopus laevis. J Embryol Exp Morphol 8:505–526

    PubMed  CAS  Google Scholar 

  • Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10:622–640

    PubMed  CAS  Google Scholar 

  • Gurdon JB (2017) Nuclear transplantation, the conservation of the genome, and prospects for cell replacement. FEBS J 284:211–217

    Article  PubMed  CAS  Google Scholar 

  • Gurdon JB, Uehlinger V (1966) “Fertile” intestine nuclei. Nature 210:1240–1241

    Article  PubMed  CAS  Google Scholar 

  • Hammer RE, Palmiter RD, Pursel VG et al (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–683

    Article  PubMed  CAS  Google Scholar 

  • Hartman CG, Lewis WH, Miller FW et al (1931) First findings of tubal ova in the cow, together with notes on oestrus. Anat Rec 48:267–275

    Article  Google Scholar 

  • Hayes BJ, Lewin HA, Goddard ME (2013) The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends Genet 29:206–214

    Article  PubMed  CAS  Google Scholar 

  • Heape W (1891) Preliminary note on the transplantation and growth of mammalian ova within a uterine foster mother. Proc R Soc Lond Biol Sci 48:457–459

    Article  Google Scholar 

  • Heape W (1897) The artificial insemination of mammals and subsequent possible fertilization or impregnation of their ova. Proc R Soc Lond B 61:52–63

    Article  Google Scholar 

  • Hochedlinger K, Jaenisch R (2002) Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415:1035–1038

    Article  PubMed  CAS  Google Scholar 

  • Human Fertilisation and Embryology Authority (HFEA) (2011) Fertility treatment in 2011: trends and figures in UK: Human Fertilisation and Embryology Authority (HFEA)

    Google Scholar 

  • Illmensee K, Hoppe PC (1981) Nuclear transplantation in Mus musculus: developmental potential of nuclei from preimplantation embryos. Cell 23:9–18

    Article  PubMed  CAS  Google Scholar 

  • Johnson MH (2011) Robert Edwards: the path to IVF. Reprod Biomed Online 23:245–262

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson LA, Flook JP, Hawk HW (1989) Sex selection in rabbits: live births from X and Y sperm separated by DNA and cell sorting. Biol Reprod 41:199–203

    Article  PubMed  CAS  Google Scholar 

  • Kellis M, Wold B, Snyder M (2014) Defining functional DNA elements in the human genome. Proc Natl Acad Sci U S A 17:6131–6138

    Article  CAS  Google Scholar 

  • Kinney GM, Pennycook JW, Schriver MD et al (1979) Surgical collection and transfer of canine embryos. Biol Reprod 20:96A

    Google Scholar 

  • Kraemer DC, Moore GT, Kramen MA (1976) Baboon infant produced by embryo transfer. Science 192:1246–1247

    Article  PubMed  CAS  Google Scholar 

  • Kues WA, Sudheer S, Herrmann D et al (2008) Genome-wide expression profiling reveals distinct clusters of transcriptional regulation during bovine preimplantation development in vivo. Proc Natl Acad Sci U S A 105:19768–19773

    Article  PubMed  PubMed Central  Google Scholar 

  • Kvasnitski AV (1951) Interbreed ova transplantations (in Russian). Soc Zooteckh 1:36–42 (Anim Breed Abstr 19:224)

    Google Scholar 

  • Kvasnitski AV (2001) Research on interbreed ova transfer in pigs. Theriogenology 56:1285–1289

    Article  PubMed  CAS  Google Scholar 

  • Laible G, Wei J, Wagner S (2015) Improving livestock for agriculture – technological progress from random transgenesis to precision genome editing heralds a new area. Biotechnol J 10:109–120

    Article  PubMed  CAS  Google Scholar 

  • Larson G, Albarella U, Dobney K et al (2007) Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proc Natl Acad Sci U S A 104:15276–15281

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Cai Y, Wang Y (2018) Cloning of macaque monkeys by somatic cell nuclear transfer. Cell 172:881–887

    Article  PubMed  CAS  Google Scholar 

  • Lopyrin AI, Loginova NV, Karpov PL (1950) Changes in the exterior of lambs as a result of interbreed embryonic transfer (in Russian). Dokl Adad Nouk SSSR Ser Biol 74:1019–1021 (Anim Breed Abstr 19, Abstr 1262)

    Google Scholar 

  • Lopyrin AI, Loginova NV, Karpov PL (1951) The effect of changed conditions during embryogenesis on the growth and development of lambs (in Russian). Sov Zootheh 6:83–95 (Anim Breed Abstr 20, Abstr 729)

    Google Scholar 

  • McGrath J, Solter D (1983) Nuclear transplantation in mouse embryos. J Exp Zool 228:355–362

    Article  PubMed  CAS  Google Scholar 

  • McGrath J, Solter D (1984) Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro. Science 226:1317–1319

    Article  PubMed  CAS  Google Scholar 

  • McHugh DE, Bradley DG (2001) Livestock genetic origins: goats buck the trend. Proc Natl Acad Sci U S A 98:5382–5384

    Article  Google Scholar 

  • McLaren A, Biggers JD (1958) Successful development and birth of mice cultivated in vitro as early embryos. Nature 182:877–878

    Article  PubMed  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  PubMed Central  CAS  Google Scholar 

  • Miller FW, Swett WW, Hartman CG et al (1931) A study of ova from the Fallopian tubes of dairy cows, with a genital history of the cows. J Agric Res 43:627–636

    Google Scholar 

  • Mutter LR, Graden AP, Olds D (1964) Successful non-surgical bovine embryo transfer. AI Digest 12:3

    Google Scholar 

  • Nicholas JS (1933) Development of transplanted rat eggs. Proc Soc Exp Biol Med 30:1111–1113

    Article  Google Scholar 

  • Niemann H (2014) Epigenetics of cloned livestock embryos and offspring. In: Cibelli J, Gurdon J, Wilmut I, Jaenisch R, Lanza R, West MD, KHS C (eds) Principles of cloning. Elsevier, Amsterdam, pp 453–463

    Chapter  Google Scholar 

  • Niemann H (2016) Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology 86:80–90

    Article  PubMed  CAS  Google Scholar 

  • Niemann H, Tian XC, King WA et al (2008) Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer. Reproduction 135:151–163

    Article  PubMed  CAS  Google Scholar 

  • Niemann H, Kues WA, Lucas-Hahn A et al (2011) Somatic cloning and epigenetic reprogramming in mammals. In: Atala A, Lanza R, Thomson JA, Nerem R (eds) Principles of regenerative medicine. Elsevier., ISBN: 978-0123814227, Amsterdam, pp 129–158

    Chapter  Google Scholar 

  • Nowak-Imialek M, Niemann H (2012) Pluripotent cells in farm animals: state of the art and future perspectives. Reprod Fertil Dev 25:103–128

    Article  PubMed  Google Scholar 

  • Oguri N, Tsutsumi Y (1974) Non-surgical egg transfer in mares. J Reprod Fertil 41:313–320

    Article  PubMed  CAS  Google Scholar 

  • Ombelet W, van Robays J (2015) Artificial insemination history: hurdles and milestones. Facts Views Vis Obgyn 7:137–143

    PubMed  PubMed Central  CAS  Google Scholar 

  • Orland B (2017) The invention of artificial fertilization in the eighteenth and nineteenth century. Hist Philos Life Sci 39:11

    Article  PubMed  Google Scholar 

  • Perry G (2017) 2016 statistics of embryo collection and transfer in domestic farm animals. IETS Newsletter 37:8–18

    Google Scholar 

  • Petersen B, Niemann H (2015) Molecular scissors and their application in genetically modified farm animals. Transgenic Res 24:381–396

    Article  PubMed  CAS  Google Scholar 

  • Pincus G (1930) Observations on the living eggs of the rabbit. Proc R Soc Lond B 107:132–167

    Article  Google Scholar 

  • Pincus G, Kirsch RE (1936) The sterility in rabbits produced by injections of oestrone and related compounds. Am J Phys 115:219–228

    CAS  Google Scholar 

  • Polge C (2007) The work of the animal research station, Cambridge. Stud Hist Philos Biol Biomed Sci 38:511–520

    Article  PubMed  Google Scholar 

  • Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164(4172):666

    Google Scholar 

  • Prather RS, Barnes FL, Sims MM et al (1987) Nuclear transplantation in the bovine embryo: assessment of donor nuclei and recipient oocyte. Biol Reprod 37:859–866

    Article  PubMed  CAS  Google Scholar 

  • Rothschild MF, Plastow G (2014) Applications of genomics to improve livestock in the developing world. Livest Sci 166:76–83

    Article  Google Scholar 

  • Schafberg R, Swalve HH (2015) The history of breeding for polled cattle. Livest Sci 179:54–70

    Article  Google Scholar 

  • Schriver MD, Kraemer DC (1978) Embryo transfer in the domestic feline. Am Ass Lab Anim Sci Publ 78–4:12

    Google Scholar 

  • Schultz H (1980) History of the international embryo transfer society II. Theriogenology 13:7–11

    Article  PubMed  CAS  Google Scholar 

  • Shendure J, Balasubramanian S, Church GM et al (2017) DNA sequencing at 40: past, present and future. Nature 550:345–353

    Article  PubMed  CAS  Google Scholar 

  • Sims M, First NL (1994) Production of calves by transfer of nuclei from cultured inner cell mass cells. Proc Natl Acad Sci U S A 91:6143–6147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spemann H (1938) Embryonic development and induction. Yale University Press, New Haven, CT, pp 373–398

    Google Scholar 

  • Steptoe PC, Edwards RG (1978) Birth after reimplantation of a human embryo. Lancet ii:366

    Article  Google Scholar 

  • Sunderam S, Kissin DM, Crawford SB, Folger SG, Boulet SL, Warner L, Barfield WD (2018) Assisted reproductive technology surveillance – United States, 2015. MMWR Surveill Summ 16:1–28

    Article  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  • Telugu BP, Donovan DM, Mark B et al (2016) Genome editing to the rescue: sustainably feeding 10 billion global human population. NIB J. https://doi.org/10.2218/natlinstbiosci.1.2016.1743

  • Telugu BP, Park KE, Park CH (2017) Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications. Mamm Genome 28:338–347

    Article  PubMed  CAS  Google Scholar 

  • Thibier M (2008) Data retrieval committee statistics of embryo transfer – year 2007. IETS Newsletter 26:4–9

    Google Scholar 

  • Tsunoda Y, Yasui T, Shioda Y et al (1987) Full-term development of mouse blastomere nuclei transplanted into enucleated two-cell embryos. J Exp Zool 242:147–151

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  PubMed  CAS  Google Scholar 

  • Vishwanath R (2003) Artificial insemination: the state of the art. Theriogenology 59:571–584

    Article  PubMed  CAS  Google Scholar 

  • Wakayama T, Perry ACF, Zuccotti M et al (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369–374

    Article  PubMed  CAS  Google Scholar 

  • Wang GD, Xie HB, Penb MS et al (2014) Domestication genomics: evidence from animals. Annu Rev Anim Biosci 2:65–84

    Article  PubMed  CAS  Google Scholar 

  • Warwick BL, Berry RO (1949) Inter-generic and intra-specific embryo transfers in sheep and goats. J Hered 40:297–303

    Article  PubMed  CAS  Google Scholar 

  • Warwick BL, Berry RO, Horlacher WR (1934) Results of mating rams to Angora female goats. In: Proc 27th Ann Meet Am Soc Anim Prod, pp 225–227

    Google Scholar 

  • Weissmann A (1893) The germ-plasm: a theory of heredity. Translated by W. Newton Parker and Harriet Rönnfeldt. Scribner, New York, NY

    Book  Google Scholar 

  • Whittingham DG (1971) Survival of mouse embryos after freezing and thawing. Nature 233:125–126

    Article  PubMed  CAS  Google Scholar 

  • Willadsen SM (1986) Nuclear transplantation in sheep embryos. Nature 320:63–65

    Article  PubMed  CAS  Google Scholar 

  • Willett EL, Black WG, Casida LH et al (1951) Successful transplantation of a fertilized bovine ovum. Science 113:247

    Article  PubMed  CAS  Google Scholar 

  • Wilmut I, Rowson LE (1973) Experiments on the low-temperature preservation of cow embryos. Vet Rec 92:686–690

    Article  PubMed  CAS  Google Scholar 

  • Wilmut I, Taylor J (2018) Cloning after Dolly. Cell Reprogram 20:1–3

    Article  PubMed  CAS  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J et al (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  PubMed  CAS  Google Scholar 

  • Zeder MA, Bradeley DG, Emshwiller E et al (2006) Documenting domestication: new genetic and archaeological paradigms. University of California Press, Berkeley/Los Angeles, CA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heiner Niemann or Bob Seamark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niemann, H., Seamark, B. (2018). The Evolution of Farm Animal Biotechnology. In: Niemann, H., Wrenzycki, C. (eds) Animal Biotechnology 1. Springer, Cham. https://doi.org/10.1007/978-3-319-92327-7_1

Download citation

Publish with us

Policies and ethics