Skip to main content

Biomass and Bioenergy

  • Chapter
  • First Online:
Book cover Carbon Sequestration in Agricultural Ecosystems
  • 2255 Accesses

Abstract

Bioenergy from biomass can replace fossil fuels in the production of heat, electricity, and liquid fuels for transport but the potential contribution is in need of further research and objective discussions. Biomass can also provide feedstock for the chemical industry to replace petroleum. Feedstock for this purpose are major plant oil crops such as oil palm (Elaeis guineensis or E. oleifera), soybean [Glycine max (L.) Merr.], rapeseed (Brassica napus L.), and sunflower (Helianthus annuus L.). In 2015, traditional biomass accounted for 9.1%, and biofuels for transportation accounted for 0.8% of the global final energy consumption. In principle, biomass could meet up to one-third of the projected global energy demand in 2050 by bringing new land under cultivation and/or increasing productivity. However, aside physically possible, socially acceptable biomass potential scenarios must be assessed. The main feedstocks for generating heat, electricity, or gaseous, liquid, and solid fuels are forestry, agricultural and livestock residues, short-rotation forest plantations, energy crops, and the organic component of municipal residues and wastes. Traditional biomass such as fuelwood, charcoal , and animal dung is source for about 99% of all bioenergy. Of minor importance is ‘modern’ biomass such as sugar, grain, and vegetable oil crops for the production of liquid biofuels . However, in the future the bulk of liquid biofuels may be produced from lignocellulosic crops cultivated on marginal, degraded, and surplus agricultural land. Dedicated lignocellulosic energy crops include perennial plants such as switchgrass (Panicum virgatum L.), Miscanthus x giganteus, sugarcane (Saccharum spp.), Agave spp., and short-rotation woody crops such as hybrid poplar (Populus spp.) and willow (Salix spp.). Compared to conventional crops such as corn (Zea mays L.), energy crops are less depending on favorable climatic and soil conditions and require fewer inputs of agrochemicals. Thus, using energy crops would reduce the direct competition for land with food production and ecosystem services, and potentially have lower net energy and greenhouse gas (GHG) effects. However, the carbon costs of dedicating land to bioenergy will exceed the benefits. For example, conversion of native ecosystems for bioenergy often results in soil organic carbon (SOC) loss. The long-term potential of energy crops depends largely on land availability, choice of crop species, improvements by biotechnology, water availability, and effects of climate change . Aside from the dedicated bioenergy plantations, other potential feedstocks are the large volumes of unused organic residues and wastes but it is unclear whether their share can be increased. However, agricultural residues are also required on site to maintain SOC stocks, soil health, and agricultural productivity, and to reduce soil erosion . The SOC sequestration may be the key component in determining the GHG reduction potential of biofuels compared to fossil fuels. Life cycle assessment (LCA) is a widely used approach to assess the GHG balance of biomass production. Removing 25 and 100% of corn residues, for example, jeopardizes agroecosystem services and causes losses of up to 3 and up to 8 Mg SOC ha−1 in 0–30 cm soil depth after 10 years, respectively. In comparison, SOC accumulates in the top 30 cm under perennial grasses at rates of up to 1 Mg SOC ha−1 yr−1. Thus, more intense harvest for bioenergy adversely affects the SOC stock. Also, producing energy crop feedstock by converting previously uncultivated land will cause a reduction in the SOC stock. Otherwise, adding residues from forest harvest, processing, and after end use may be beneficial to the SOC stock compared to establishing woody crop plantations. Sugarcane, perennial grasses, and trees can be cultivated sustainably for bioenergy but estimates for the potential of global bioenergy plantations when environmental and agricultural constraints are taken into account vary widely. Specifically, long-term, large-scale biomass cultivation plots, in particular, of switchgrass and Miscanthus x giganteus are scanty. While biofuels and, in particular, liquid biofuels will offset only a modest share in fossil energy use over the next decade, the impacts on agriculture and food security may be drastic. This chapter begins with a section about biomass as feedstock alternative to petroleum. Then, agroecosystem land use and management types for producing traditional and energy crop feedstocks are discussed with a focus on non-woody plants. The chapter concludes with a section about the effects of agricultural biomass production systems for bioenergy and biofuel on SOC sequestration. Additional information about the potential of woody biomass from agroforestry and plantations as feedstock for bioenergy can be found elsewhere (e.g., Buchholz et al. 2016; Lorenz and Lal 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albanito F, Beringer T, Corstanje R, Poulter B, Stephenson A, Zawadzka J, Smith P (2016) Carbon implications of converting cropland to bioenergy crops or forest for climate mitigation: a global assessment. GCB Bioenerg 8:81–95

    Article  CAS  Google Scholar 

  • Amougou N, Bertrand I, Machet JM, Recous S (2011) Quality and decomposition in soil of rhizome, root and senescent leaf from Miscanthus x giganteus, as affected by harvest date and N fertilization. Plant Soil 338:83–97

    Article  CAS  Google Scholar 

  • Anderson K (2015) Talks in the city of light generate more heat. Nature 528:437

    Article  PubMed  CAS  Google Scholar 

  • Anderson-Teixeira KJ, Davis SC, Masters MD, DeLucia EH (2009) Changes in soil organic carbon under biofuel crops. GCB Bioenergy 1:75–96

    Article  CAS  Google Scholar 

  • Aro EM (2016) From first generation biofuels to advanced solar biofuels. Ambio 45(Suppl. 1):S24–S31. https://doi.org/10.1007/s13280-015-0730-0

    Article  PubMed  CAS  Google Scholar 

  • Arrouays D, Balesdent J, Germon J, Jayet P, Soussana J, Stengel P (2002) Stocker du carbone dans les sols agricoles de France? Expertise scientifique collective. Rapport d’expertise re´ alise´ par INRA a` la demande du Ministe`re de l’Ecologie et du De´veloppement Durable. In: Contribution a` la lutte contre l’effet de serre. Paris, France: INRA; 2002

    Google Scholar 

  • Arvizu D, Bruckner T, Edenhofer O, Estefen S, Faaij A, Fischedick M, Hiriart G, Hohmeyer O, Hollands KGT, Huckerby J, Kadner S, Killingtveit Å, Kumar A, Lewis A, Lucon O, Matschoss P, Maurice L, Mirza M, Mitchell C, Moomaw W, Moreira J, Nilsson LJ, Nyboer J, Pichs-Madruga R, Sathaye J, Sawin J, Schaeffer R, Schei T, Schlömer S, Seyboth K, Sims R, Sinden G, Sokona Y, von Stechow C, Steckel J, Verbruggen A, Wiser R, Yamba F, Zwickel T (2011) Technical summary. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Azar C (2011) Biomass for energy: a dream come true. or a nightmare? WIREs Clim Change 2:309–323

    Article  Google Scholar 

  • Balagopal B, Paranikas P, Rose J (2010) What’s next for alternative energy?. The Boston Consulting Group Inc., Boston, MA

    Google Scholar 

  • Bartle JR, Abadi A (2010) Toward sustainable production of second generation bioenergy feedstocks. Energy Fuels 24:2–9

    Article  CAS  Google Scholar 

  • Bauen A, Berndes G, Junginger M, Londo M, Vuille F (2009) Bioenergy—a sustainable and reliable energy source. A review of status and prospects. IEA Bioenergy: ExCo:2009:06

    Google Scholar 

  • Beer T, Grant T, Campbell PK (2007) The greenhouse and air quality emissions of biodiesel blends in Australia. CSIRO

    Google Scholar 

  • Beniston JW, Shipitalo MJ, Lal R et al (2015) Carbon and macronutrient losses during accelerated erosion under different tillage and residue management. Eur J Soil Sci 66:218–225. https://doi.org/10.1111/ejss.12205

    Article  CAS  Google Scholar 

  • Benjamin JG, Halvorson AD, Nielsen DC, Mikha MM (2010) Crop management effects on crop residue production and changes in soil organic carbon in the central Great Plains. Agron J 102:990–997

    Article  CAS  Google Scholar 

  • Beringer T, Lucht W, Schaphoff S (2011) Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenerg 3:299–312

    Article  CAS  Google Scholar 

  • Bessou C, Ferchaud F, Gabrielle B, Mary B (2011) Biofuels, greenhouse gases and climate change. A review. Agron Sustain Dev 31:1–79

    Article  CAS  Google Scholar 

  • Blanco-Canqui H, Mitchell RB, Jin VL, Schmer MR, Eskridge KM (2017) Perennial warm-season grasses for producing biofuel and enhancing soil properties: an alternative to corn residue removal. GCB Bioenerg 9:1510–1521. https://doi.org/10.1111/gcbb.12436

    Article  CAS  Google Scholar 

  • Bonsch M, Humpenöder F, Popp A, Bodirsky B, Dietrich JP, Rolinski Biewald A, Lotze-Campen H, Weindl I, Gerten D, Stevanovic M (2016) Trade-offs between land and water requirements for large-scale bioenergy production. GCB Bioenerg 8:11–24

    Article  Google Scholar 

  • Borland AM, Griffiths H, Hartwell J, Smith JAC (2009) Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J Exp Bot 60:2879–2896

    Article  CAS  PubMed  Google Scholar 

  • Bourgis F, Kilaru A, Cao X, Ngando-Ebongue G-F, Drira N, Ohlrogge JB, Arondel V (2011) Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc Natl Acad Sci USA 108:12527–12532

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouwman AF, Van Grinsven JJM, Eickhout B (2010) Consequences of the cultivation of energy crops for the global nitrogen cycle. Ecol Appl 20:101–109

    Article  PubMed  CAS  Google Scholar 

  • Bowyer C (2010) Anticipated indirect land-use change associated with expanded use of biofuels and bioliquids in the EU—an analysis of the national renewable energy action plans. www.ieep.eu

  • Brandão M, Milà i Canals L, Clift R (2011) Soil organic carbon changes in the cultivation of energy crops: implications for GHG balances and soil quality for use in LCA. Biomass Bioenerg 35:2323–2336

    Article  CAS  Google Scholar 

  • Buchholz T, Hurteau MD, Gunn J, Saah D (2016) A global meta-analysis of forest bioenergy greenhouse gas emission accounting studies. GCB Bioenerg 8:281–289

    Article  CAS  Google Scholar 

  • Campbell CA, McConkey BG, Gameda S, Izaurralde RC, Liang BC, Zentner RP, Sabourin D (2002) Efficiencies of conversion of residue C to soil C. In: Kimble JM, Lal R, Follett RF (eds) Agricultural practices and policies for carbon sequestration in soil. CRC Press, Boca Raton, FL, pp 305–314

    Google Scholar 

  • Carlson KM, Heilmayr R, Gibbs HK et al (2018) Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc Natl Acad Sci USA 115:121–126

    Article  PubMed  CAS  Google Scholar 

  • Carlsson AS (2009) Plant oils as feedstock alternatives to petroleum—a short survey of potential oil crop platforms. Biochimie 91:665–670

    Article  PubMed  CAS  Google Scholar 

  • Carvalho JLN, Hudiburg TW, Franco HCJ, Delucia EH (2017) Contribution of above- and belowground bioenergy crop residues to soil carbon. GCBBioenerg 9:1333–1343. https://doi.org/10.1111/gcbb.12411

    Article  CAS  Google Scholar 

  • Cayuela ML, Oenema O, Kuikman PJ, Bakker RR, van Groenigen JW (2010) Bioenergy by-products as soil amendments? Implications for carbon sequestration and greenhouse gas emissions. GCB Bioenerg 2:201–213

    CAS  Google Scholar 

  • Ceja-Navarro JA, Rivera-Orduña FN, Patiño-Zúñiga L, Vila-Sanjurjo A, Crossa J, Govaerts B, Dendooven L (2010) Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities. Appl Environ Microbiol 76:3685–3691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaplin-Kramer R, Sim S, Hamel P et al (2017) Life cycle assessment needs predictive spatial modelling for biodiversity and ecosystem services. Nat Commun 8:15065. https://doi.org/10.1038/ncomms15065

    Article  PubMed  PubMed Central  Google Scholar 

  • Chase LDC, Henson IE (2010) A detailed greenhouse gas budget for palm oil production. Int J Agric Sustain 8:199–214

    Article  Google Scholar 

  • Ciais P, Wattenbach M, Vuichard N, Smith P, Piao SL, Don A, Luyssaert S, Janssens IA, Bondeau A, Dechow R, Leip A, Smith PC, Beer C, Van DerWerf GR, Gervois S, Van Oost K, Tomelleri E, Freibauer A, Schulze E-D, Synthesis Team CARBOEUROPE (2010) The European carbon balance. Part 2: croplands. Glob Change Biol 16:1409–1428

    Article  Google Scholar 

  • Creutzig F (2016) Economic and ecological views on climate change mitigation with bioenergy and negative emissions. GCB Bioenerg 8:4–10

    Article  Google Scholar 

  • Creutzig F, Ravindranath NH, Berndes G, Bolwig S, Bright R, Cherubini F, Chum H, Corbera E, Delucchi M, Faaij A, Fargione J, Haberl H, Heath G, Luconi O, Plevin R, Popp A, Robledo-Abad C, Rose S, Smith P, Stromman A, Suh S, Masera O (2015) Bioenergy and climate change mitigation: an assessment. GCB Bioenerg 7:916–944

    Article  CAS  Google Scholar 

  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–395

    Article  CAS  Google Scholar 

  • Daioglou V, Stehfest E, Wicke B, Faaij AC, Van Vuuren DP (2016) Projections of the availability and cost of residues from agriculture and forestry. GCB Bioenerg 8:456–470

    Article  Google Scholar 

  • Daioglou V, Wicke B, Faaij AC, Van Vuuren DP (2015) Competing uses of biomass for energy and chemicals: implications for long-term global CO2 mitigation potential. GCB Bioenerg 7:1321–1334

    Article  CAS  Google Scholar 

  • Dale BE, Bals BD, Kim S, Eranki P (2010) Biofuels done right: land efficient animal feeds enable large environmental and energy benefits. Environ Sci Technol 44:8385–8389

    Article  PubMed  CAS  Google Scholar 

  • Dale VH, Fl Kline, Wright LL, Perlack RD, Dowing M, Graham RL (2011) Interactions among bioenergy feedstock choices, landscape dynamics, and land use. Ecol Appl 21:1039–1054

    Article  PubMed  Google Scholar 

  • Daly C, Halbleib MD, Hannaway DB, Eaton LM (2018) Environmental limitation mapping of potential biomass resources across the conterminous United States. GCB Bioenerg. https://doi.org/10.1111/gcbb.12496

    Article  Google Scholar 

  • Davis SC, Dohleman FG, Long SP (2011) The global potential for Agave as a biofuel feedstock. GCB Bioenergy 3:68–78

    Article  CAS  Google Scholar 

  • Davis SC, Parton WJ, Dohleman FG, Smith CM, Del Grosso S, Kent AD, DeLucia EH (2010) Comparative biogeochemical cycles of bioenergy crops reveal nitrogen-fixation and low greenhouse gas emissions in a Miscanthus x giganteus agro-ecosystem. Ecosystems 13:144–156

    Article  CAS  Google Scholar 

  • De Gorter H, Drabik G (2012) The effect of biofuel policies on food grain commodity prices. Biofuels 3:21–24

    Article  CAS  Google Scholar 

  • DeCicco (2017) Author’s response to commentary on “Carbon balance effects of U.S. biofuel production and use”. Clim Chang 144:123–129. https://doi.org/10.1007/s10584-017-2026-9

  • DeCicco JM, Liu DY, Heo J et al (2016) Carbon balance effects of U.S. biofuel production and use. Clim Chang 138:667–680

    Article  CAS  Google Scholar 

  • De Kleine R, Wallington TJ, Anderson JE, Kim HC (2017) Commentary on “Carbon balance effects of U.S. biofuel production and use” by DeCicco et al. (2016). Clim Chang 144:111–119. https://doi.org/10.1007/s10584-017-2032-y

  • Deininger K (2011) Challenges posed by the new wave of farmland investment. J Peasant Stud 38:217–247

    Article  Google Scholar 

  • De Vries SC, Van de Ven GWJ, Van Ittersum MK, Giller KE (2010) Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques. Biomass Bioenerg 34:588–601

    Article  CAS  Google Scholar 

  • Djomo SN, Ceulemans R (2012) A comparative analysis of the carbon intensity of biofuels caused by land use changes. GCB Bioenerg 4:392–407. https://doi.org/10.1111/j.1757-1707.2012.01176.x

    Article  CAS  Google Scholar 

  • Dohleman FG, Long SP (2009) More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiol 150:2104–2115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob Change Biol 17:1658–1670

    Article  Google Scholar 

  • Dondini M, Hastings A, Saiz G, Jones MB, Smith P (2009) The potential of Miscanthus to sequester carbon in soils: comparing field measurements in Carlow, Ireland to model predictions. GCB Bioenergy 1:413–425

    Article  CAS  Google Scholar 

  • Dornburg V, van Vuuren D, van de Ven G, Langeveld H, Meeusen M, Banse M, van Oorschot M, Ros J, van den Born GJ, Aiking H, Londo M, Mozaffarian H, Verweij P, Lyseng E, Faaij A (2010) Bioenergy revisited: key factors in global potentials of bioenergy. Energy Environ Sci 3:258–267

    Article  Google Scholar 

  • Du Z, Ren T, Hu C (2010) Tillage and residue removal effects on soil carbon and nitrogen storage in the North China Plain. Soil Sci Soc Am J 74:196–202

    Article  CAS  Google Scholar 

  • Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Arvizu D, Bruckner T, Christensen J, Devernay J-M, Faaij A, Fischedick M, Goldstein B, Hansen G, Huckerby J, Jäger-Waldau A, Kadner S, Kammen D, Krey V, Kumar A, Lewis A, Lucon O, Matschoss P, Maurice L, Mitchell C, Moomaw W, Moreira J, Nadai A, Nilsson LJ, Nyboer J, Rahman A, Sathaye J, Sawin J, Schaeffer R, Schei T, Schlömer S, Sims R, Verbruggen A, von Stechow C, Urama K, Wiser R, Yamba F, Zwickel T (2011) Summary for policymakers. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Chapter  Google Scholar 

  • Erisman JW, van Grinsven H, Leip A, Mosier A, Bleeker A (2010) Nitrogen and biofuels; an overview of the current state of knowledge. Nutr Cycl Agroecosyst 86:211–223

    Article  CAS  Google Scholar 

  • FAO (2008) Forests and energy. FAO Forestry paper 154. FAO, Rome

    Google Scholar 

  • FAO (2017) FAOSTAT. http://www.fao.org/faostat/en/#data

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238

    Article  CAS  Google Scholar 

  • Ferchaud F, Vitte G, Mary B (2016) Changes in soil carbon stocks under perennial and annual bioenergy crops. GCB Bioenerg 8:290–306

    Article  CAS  Google Scholar 

  • Field CB, Campbell JE, Lobell DB (2008) Biomass energy: the scale of the potential resource. Trends Ecol Evol 23:65–72

    Article  PubMed  Google Scholar 

  • Finkbeiner M (2014) Indirect land use change—help beyond the hype? Biomass Bioenerg 62:218–221

    Article  Google Scholar 

  • Fischer G, Prieler S, Velthuizen H, Berndes G, Faaij A, Londo M, de Wit M (2010) Biofuel production potentials in Europe: sustainable use of cultivated land and pastures, part II: land use scenarios. Biomass Bioenerg 34:173–187

    Article  Google Scholar 

  • Franzluebbers AJ (2015) Farming strategies to fuel bioenergy demands and facilitate essential soil services. Geoderma 259–260:251–258

    Article  Google Scholar 

  • Frazão LA, Paustian K, Cerri CEP, Cerri CC (2014) Soil carbon stocks under oil palm plantations in Bahia State, Brazil. Biomass Bioenerg 62:1–7

    Article  CAS  Google Scholar 

  • Fritsche UR, Sims REH, Monti A (2010) Direct and indirect land-use competition issues for energy crops and their sustainable production—an overview. Biofuels Bioprod Bioref 4:692–704

    Article  CAS  Google Scholar 

  • Galdos MV, Cerri CC, Lal R, Bernoux M, Feigl B, Cerri CEP (2010) Net greenhouse gas fluxes in Brazilian ethanol production systems. GCB Bioenerg 2:37–44

    Article  CAS  Google Scholar 

  • Gasparatos A, Stromberg P, Takeuchi K (2011) Biofuels, ecosystem services and human wellbeing: putting biofuels in the ecosystem services narrative. Agric Ecosyst Environ 142:111–128

    Article  Google Scholar 

  • Gauder M, Billen N, Zikeli S et al (2016) Soil carbon stocks in different bioenergy cropping systems including subsoil. Soil Till Res 155:308–317

    Article  Google Scholar 

  • GBEP (Global Bioenergy Partnership) (2011) GBEP Sustainability indicators, May 20, 2011. FAO/GBEP, Rome

    Google Scholar 

  • Gelfand I, Zenone T, Jasrotia P, Chen J, Hamilton SK, Robertson GP (2011) Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production. Proc Natl Acad Sci USA 108:13864–13869

    Article  PubMed  PubMed Central  Google Scholar 

  • Georgescu M, Lobell DB, Field CB (2011) Direct climate effects of perennial bioenergy crops in the United States. Proc Natl Acad Sci USA 108:4307–4312

    Article  PubMed  PubMed Central  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  Google Scholar 

  • Goetz A, German L, Weigelt J (2017) Scaling up biofuels? A critical look at expectations, performance and governance. Energ Pol in press

    Article  Google Scholar 

  • Gold S (2011) Bio-energy supply chains and stakeholders. Mitig Adapt Strateg Glob Change 16:439–462

    Article  Google Scholar 

  • Gollany HT, Novak JM, Liang Y, Albrecht SL, Rickman RW, Follett RF, Wilhelm WW, Hunt PG (2010) Simulating soil organic carbon dynamics with residue removal using the CQESTR model. Soil Sci Soc Am J 74:372–383

    Article  CAS  Google Scholar 

  • Gollany HT, Rickman RW, Liang Y, Albrecht SL, Machado S, Kang S (2011) Predicting agricultural management influence on long-term soil organic carbon dynamics: implications for biofuel production. Agron J 103:234–246

    Article  CAS  Google Scholar 

  • Goodrick I, Nelson PN, Banabas M, Wurster CM, Bird MI (2015) Soil carbon balance following conversion of grassland to oil palm. GCB Bioenerg 7:263–272

    Article  CAS  Google Scholar 

  • Graham RL, Nelson R, Sheehan J, Perlack RD, Wright LL (2007) Current and potential U.S. corn stover supplies. Agron J 99:1–11

    Article  Google Scholar 

  • Gregg JS, Izaurralde RC (2010) Effect of crop residue harvest on long-term crop yield, soil erosion and nutrient balance: trade-offs for a sustainable bioenergy feedstock. Biofuels 1:69–83

    Article  CAS  Google Scholar 

  • Gregg JS, Smith SJ (2010) Global and regional potential for bioenergy from agricultural and forestry residue biomass. Mitig Adapt Strateg Glob Change 15:241–262

    Article  Google Scholar 

  • Hall CAS, Benemann JR (2011) Oil from algae? Bioscience 61:741–742

    Article  Google Scholar 

  • Hambrick W, Jungjohann A, Chiu A, Flynn H (2010) Beyond biofuels: renewable energy opportunities for US farmers. Heinrich Böll Stiftung. www.hbfus.org

  • Han FX, King RL, Lindner JS, Yu T-Y, Durbha SS, Younan NH, Monts DL, Su Y, Luthe JC, Plodine MJ (2011) Nutrient fertilizer requirements for sustainable biomass supply to meet U.S. bioenergy goal. Biomass Bioenerg 35:253–262

    Article  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103:11206–11210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hillmyer MA (2017) The promise of plastics from plants. Science 358:868-

    Article  PubMed  CAS  Google Scholar 

  • Hooker BA, Morris TF, Peters R, Cardon ZG (2005) Long-term effects of tillage and corn stalk return on soil carbon dynamics. Soil Sci Soc Am J 69:188–196

    Article  CAS  Google Scholar 

  • Houghton RA (2010) How well do we know the flux of CO2 from land-use change? Tellus 62B:337–351

    Article  CAS  Google Scholar 

  • IEA (International Energy Agency) (2010) Sustainable production of second-generation biofuels. Paris

    Google Scholar 

  • IEA (2011) Technology roadmap—biofuels for transport. Paris

    Google Scholar 

  • IEA (2016) World energy outlook 2016. OECD/IEA, Paris

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2014) Climate change 2014: mitigation of climate change, contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jaiswal D, De Souza AP, Larsen S et al (2017) Brazilian sugarcane ethanol as an expandable green alternative to crude oil use. Nat Clim Change 7:788–794. https://doi.org/10.1038/NCLIMATE3410

    Article  Google Scholar 

  • Johnson JMF, Karlen DL, Andrews SS (2010) Conservation considerations for sustainable bioenergy feedstock production: if, what, where, and how much? J Soil Water Conserv 65:88A–91A

    Article  Google Scholar 

  • Johnston M, Licker R, Foley J, Holloway T, Mueller ND, Barford C, Kucharik C (2011) Closing the gap: global potential for increasing biofuel production through agricultural intensification. Environ Res Lett 6:034028

    Article  Google Scholar 

  • Jones CD, Zhang X, Reddy AD, Robertson GP, Izaurralde RC (2017) The greenhouse gas intensity and potential biofuel production capacity of maize stover harvest in the US Midwest. GCBBioenerg 9:1333–1343. https://doi.org/10.1111/gcbb.12411

    Article  CAS  Google Scholar 

  • Kant P, Wu S (2011) The extraordinary collapse of Jatropha as a global biofuel. Environ Sci Technol 45:7114–7115

    Article  PubMed  CAS  Google Scholar 

  • Karlen DL, Beeler LW, Ong RG, Dale BE (2015) Balancing energy, conservation, and soil health requirements for plant biomass. J Soil Water Conserv 70:279–287

    Article  Google Scholar 

  • Karlen DL, Birell SJ, Hess JR (2011a) A five-year assessment of corn stover harvest in central Iowa, USA. Soil Till Res 115–116:47–55

    Article  Google Scholar 

  • Karlen DL, Varvel GE, Johnson JMF, Baker JM, Osborne SL, Novak JM, Adler PR, Roth GW, Birrell SJ (2011b) Monitoring soil quality to assess the sustainability of harvesting corn stover. Agron J 103:288–295

    Article  CAS  Google Scholar 

  • Kim H, Kim S, Dale BE (2009) Biofuels, land use change, and greenhouse gas emissions: some unexplored variables. Environ Sci Technol 43:961–967

    Article  PubMed  CAS  Google Scholar 

  • Kline KL, Msangi S, Dale VH et al (2017) Reconciling food security and bioenergy: priorities for action. GCB Bioenerg 9:557–576

    Article  Google Scholar 

  • Koh LP, Miettinen J, Chin Liew SC, Ghazoul J (2011) Remotely sensed evidence of tropical peatland conversion to oil palm. Proc Natl Acad Sci USA 108:5127–5132

    Article  PubMed  PubMed Central  Google Scholar 

  • Kutsch WL, Aubinet M, Buchmann N, Smith P, Osborne B, Eugster W, Wattenbach M, Schrumpf M, Schulze ED, Tomelleri E, Ceschia E, Bernhofer C, Béziat P, Carrara A, Di Tommasi P, Grünwald T, Jones M, Magliulo V, Marloie O, Moureaux C, Olioso A, Sanz MJ, Saunders M, Sogaard H, Ziegler W (2010) The net biome production of full crop rotations in Europe. Agric Ecosyst Environ 139:336–345

    Article  Google Scholar 

  • Lafond GP, Stumborg M, Lemke R, May WE, Holzapfel CB, Campbell CA (2009) Quantifying straw removal through baling and measuring the long-term impact on soil quality and wheat production. Agron J 101:529–537

    Article  Google Scholar 

  • Lal R (2009) Soil quality impacts of residue removal for bioethanol production. Soil Till Res 102:233–241

    Article  Google Scholar 

  • Lal R (2016) Soil health and carbon management. Food Energ Sec 5:212–222

    Article  Google Scholar 

  • Lapola DM, Schaldach R, Alcamo J, Bondeau A, Koch J, Koelking C, Priess JA (2010) Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc Natl Acad Sci USA 107:3388–3393

    Article  PubMed  PubMed Central  Google Scholar 

  • Larkum AWD (2010) Limitations and prospects of natural photosynthesis for bioenergy production. Curr Opin Biotechnol 21:271–276

    Article  PubMed  CAS  Google Scholar 

  • Larson JA, English BC, De La Torre Ugarte DG, Menard RJ, Hellwinckel CM, West TO (2010) Economic and environmental impacts of the corn grain ethanol industry on the United States agricultural sector. J Soil Water Conserv 65:267–279

    Article  Google Scholar 

  • Laungani R, Knops JMH (2009) The impact of co-occurring tree and grassland species on carbon sequestration and potential biofuel production. GCB Bioenerg 1:392–403

    Article  CAS  Google Scholar 

  • Le PVV, Kumar P, Drewry DT (2011) Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the Midwestern United States. Proc Natl Acad Sci USA 108:15085–15090

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee DK, Aberle E, Anderson EK et al (2018) Biomass production of herbaceous energy crops in the United States: field trial results and yield potential maps from the multiyear regional feedstock partnership. GCB Bioenerg. https://doi.org/10.1111/gcbb.12493

    Article  Google Scholar 

  • Lemus R, Lal R (2005) Bioenergy crops and carbon sequestration. Crit Rev Plant Sci 24:1–21

    Article  CAS  Google Scholar 

  • Lisboa CC, Butterbach-Bahl K, Mauder M, Kiese R (2011) Bioethanol production from sugarcane and emissions of greenhouse gases—known and unknowns. GCB Bioenerg 3:277–292

    Article  CAS  Google Scholar 

  • Lu W, Zhang T (2010) Life-cycle implications of using crop residues for various energy demands in China. Environ Sci Technol 44:4026–4033

    Article  PubMed  CAS  Google Scholar 

  • Loarie SR, Lobell DB, Asner GP, Mu Q, Field CB (2011) Direct impacts on local climate of sugar-cane expansion in Brazil. Nature Clim Change 1:105–109

    Article  Google Scholar 

  • Lorenz K, Lal R (2005) The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv Agron 88:35–66

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R (2010) Carbon sequestration in forest ecosystems. Springer, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Machado KS, Seleme R, Maceno MM, Zattar IC (2017) Carbon footprint in the ethanol feedstocks cultivation—agricultural CO2 emission assessment. Agr Syst 157:140–145

    Article  Google Scholar 

  • Machovina B, Feeley KJ (2017) Restoring low-input high-diversity grasslands as a potential global resource for biofuels. Sci Tot Environ 609:205–214

    Article  CAS  Google Scholar 

  • Marland G, Obersteiner M (2008) Large-scale biomass for energy, with considerations and cautions: an editorial comment. Clim Change 87:335–342

    Article  Google Scholar 

  • Mathews JA, Tan H (2009) Biofuels and indirect land use change effects: the debate continues. Biofuel Bioprod Bioref. https://doi.org/10.1002/bbb.147

    Article  Google Scholar 

  • McBride AC, Dale VH, Baskaran LM, Downing ME, Eaton LM, Efroymson RA, Garten CT, Kline KL, Jager HI, Mulholland PJ, Parish ES, Schweizer PE, Storey JM (2011) Indicators to support environmental sustainability of bioenergy systems. Ecol Indic 11:1277–1289

    Article  Google Scholar 

  • McKone TE, Nazaroff WW, Berck P, Auffhammer M, Lipman T, Torn MS, Masanet E, Lobscheid A, Santero N, Mishra U, Barrett A, Bomberg M, Fingerman K, Scown C, Strogen B, Horvath A (2011) Grand challenges for life-cycle assessment of biofuels. Environ Sci Technol 45:1751–1756

    Article  PubMed  CAS  Google Scholar 

  • Miller SA (2010) Minimizing land use and nitrogen intensity of bioenergy. Environ Sci Technol 44:3932–3939

    Article  PubMed  CAS  Google Scholar 

  • Morgan JA, Follett RF, Allen LH Jr, Del Grosso S, Derner JD, Dijkstra F, Franzluebbers A, Fry R, Paustian K, Schoeneberger MM (2010) Carbon sequestration in agricultural lands of the United States. J Soil Water Conserv 65:6A–13A

    Article  Google Scholar 

  • Mulder K, Hagens N, Fisher B (2010) Burning water: a comparative analysis of the energy return on water invested. Ambio 39:30–39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy R, Woods J, Black M, McManus M (2011) Global developments in the competition for land from biofuels. Food Pol 36:S52–S61

    Article  Google Scholar 

  • Nabuurs GJ, Masera O, Andrasko K, Benitez-Ponce P, Boer R, Dutschke M, Elsiddig E, Ford-Robertson J, Frumhoff P, Karjalainen T, Krankina O, Kurz WA, Matsumoto M, Oyhantcabal W, Ravindranath NH, Sanz Sanchez MJ, Zhang X (2007) Forestry. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: Mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 541–584

    Google Scholar 

  • Nuffield Council on Bioethics (2011) Biofuels: ethical issues. http://www.nuffieldbioethics.org

  • Offermann R, Seidenberger T, Thrän D, Kaltschmitt M, Zinoviev S, Miertus S (2011) Assessment of global bioenergy potentials. Mitig Adapt Strateg Glob Change 16:103–115

    Article  Google Scholar 

  • Otto M, Berndes G, Fritsche U (2011) The bioenergy and water nexus. Biofuels Bioprod Bioref 5:343–346

    Article  Google Scholar 

  • Owen NA, Fahy KF, Griffiths H (2016) Crassulacean acid metabolism (CAM) offers sustainable bioenergy production and resilience to climate change. GCB Bioenerg 8:737–749

    Article  CAS  Google Scholar 

  • Owen NA, Inderwildi OR, King DA (2010) The status of conventional world oil reserves—hype or cause for concern? Energy Pol 38:4743–4749

    Article  Google Scholar 

  • Patzek TW (2010) A probabilistic analysis of the switchgrass ethanol cycle. Sustainability 2:3158–3194

    Article  CAS  Google Scholar 

  • Payne WA (2010) Are biofuels antithetic to long-term sustainability of soil and water resources? Adv Agron 105:1–46

    Article  Google Scholar 

  • Pehl M, Arvesen A, Humpenöder F et al (2017) Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling. Nat Energ 2:939–945

    Article  CAS  Google Scholar 

  • Persson T, Garcia Y Garcia A, Paz JO, Fraisse CW, Hoogenboom G (2010) Reduction in greenhouse gas emissions due to the use of bio-ethanol from wheat grain and straw produced in the south-eastern USA. J Agric Sci 148:511–527

    Article  CAS  Google Scholar 

  • Pickard WF (2010) The future of biomass energy: a Fermi-calculation perspective. Energy Pol 38:1672–1674

    Article  Google Scholar 

  • Plevin RJ, O’Hare M, Jones AD, Torn MS, Gibbs HK (2010) Greenhouse gas emissions from biofuels’ indirect land use change are uncertain but may be much greater than previously estimated. Environ Sci Technol 44:8015–8021

    Article  PubMed  CAS  Google Scholar 

  • Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael B, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone—carbon response functions as a model approach. Glob Change Biol 17:2415–2427

    Article  Google Scholar 

  • Powers RF, Scott DA, Sanchez FG, Voldseth RA, Page-Dumroese DS, Elioff JD, Stone DM (2005) The North American long-term soil productivity experiment: findings from the first decade of research. For Ecol Manage 220:31–50

    Article  Google Scholar 

  • Qin Z, Dunn JB, Kwon H, Mueller S, Wander MM (2016) Soil carbon sequestration and land use change associated with biofuel production: empirical evidence. GCB Bioenerg 8:66–80

    Article  CAS  Google Scholar 

  • Qin Z, Zhuang Q, Zhu X, Cai X, Zhang X (2011) Carbon consequences and agricultural implications of growing biofuel crops on marginal agricultural lands in China. Environ Sci Technol 45:10765–10772

    Article  PubMed  CAS  Google Scholar 

  • Qiu H, Huang J, Keyzer M, van Veen W, Rozelle S, Fisher G, Ermolieva T (2011) Biofuel development, food security and the use of marginal land in China. J Environ Qual 40:1058–1067

    Article  PubMed  CAS  Google Scholar 

  • Raffa DW, Bogdanski A, Tittonell P (2015) How does crop residue removal affect soil organic carbon and yield? A hierarchical analysis of management and environmental factors. Biomass Bioenerg 81:345–355

    Article  CAS  Google Scholar 

  • REN21 (2017) Renewables 2017 Global Status Report. REN21 Secretariat, Paris

    Google Scholar 

  • Richardson M, Kumar P (2017) Critical Zone services as environmental assessment criteria in intensively managed landscapes. Earth’s Future 4. https://doi.org/10.1002/2016ef000517

    Article  Google Scholar 

  • Ridley CE, Clark CM, LeDuc SD, Bierwagen BG, Lin BB, Mehl A, Tobias DA (2012) Biofuels: network analysis of the literature reveals key environmental and economic unknowns. Environ Sci Technol 46:1309–1315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Riffell S, Verschuyl J, Miller D, Wigley B (2011) Biofuel harvests, coarse woody debris, and biodiversity—a meta-analysis. For Ecol Manage 261:878–887

    Article  Google Scholar 

  • Rist J, Lee JSH, Koh LP (2009) Biofuels: social benefits. Science 326:1344

    Article  PubMed  CAS  Google Scholar 

  • Robertson GP, Hamilton SK, Barham BL, et al (2017) Cellulosic biofuel contributions to a sustainable energy future: choices and outcomes. Science 356:eaal2324

    Article  CAS  PubMed  Google Scholar 

  • Robertson GP, Hamilton SK, Del Grosso SJ, Parton WJ (2011) The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations. Ecol Appl 21:1055–1067

    Article  PubMed  Google Scholar 

  • Robledo-Abad C, Althaus HJ, Berndes G et al (2017) Bioenergy production and sustainable development: science base for policymaking remains limited. GCBBioenerg 9:541–556

    Google Scholar 

  • Sang T, Zhu W (2011) China’s bioenergy potential. GCB Bioenerg 3:79–90

    Article  Google Scholar 

  • Schipfer F, Kranzl L, Leclère D, Sylvain L, Forsell N, Valin H (2017) Advanced biomaterials scenarios for the EU28 up to 2050 and their respective biomass demand. Biomass Bioenerg 96:19–27

    Article  Google Scholar 

  • Schnoor JL (2011) Cellulosic biofuels disappoint. Environ Sci Technol 45:7099

    Article  PubMed  CAS  Google Scholar 

  • Scholz V, Heiermann M, Kaulfuss P (2010) Sustainability of energy crop cultivation in Central Europe. In: Lichtfouse E (ed) Sociology, organic farming, climate change and soil science. Springer, Dordrecht, The Netherlands, pp 109–145

    Chapter  Google Scholar 

  • Scown CD, Nazaroff WW, Mishra U, Strogen B, Lobscheid AB, Masanet E, Santero NJ, Horvath A, McKone TE (2012) Lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production. Environ Res Lett 7:014011. https://doi.org/10.1088/1748-9326/7/1/014011

    Article  CAS  Google Scholar 

  • Searchinger TD, Beringer T, Strong A (2017) Does the world have low-carbon bioenergy potential from the dedicated use of land? Energ Pol 110:434–446

    Article  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240

    Article  PubMed  CAS  Google Scholar 

  • Searle SY, Malins CJ (2014) Will energy crop yields meet expectations? Biomass Bioenerg 65:3–12. https://doi.org/10.1016/j.biombioe.2014.01.001

    Article  Google Scholar 

  • Searle S, Malins C (2015) A reassessment of global bioenergy potential in 2050. GCB Bioenerg 7:328–336. https://doi.org/10.1111/gcbb.12141

    Article  Google Scholar 

  • Service RF (2010) Is there a road ahead for cellulosic ethanol? Science 329:784–785

    Article  PubMed  Google Scholar 

  • Shah A, Darr M, Khanal S, Lal R (2017) A techno-environmental overview of a corn stover biomass feedstock supply chain for cellulosic biorefineries. Biofuels 8:59–69

    Article  CAS  Google Scholar 

  • Simmons BA (2011) Opportunities and challenges in advanced biofuel production: the importance of synthetic biology and combustion science. Biofuels 2:5–7

    Article  CAS  Google Scholar 

  • Singh NK, Dhar DW (2011) Microalgae as second generation biofuel. A review. Agronomy Sust Developm 31:605–629

    Article  CAS  Google Scholar 

  • Slade R, Bauen A, Gross R (2014) Global bioenergy resources. Nat Clim Change 4:99–105

    Article  Google Scholar 

  • Slade R, Saunders R, Gross R, Bauen A (2011) Energy from biomass: the size of the global resource. Imperial College Centre for Energy Policy and Technology and UK Energy Research Centre, London

    Google Scholar 

  • Smil V (1999) Crop residues: agriculture’s largest harvest. Bioscience 49:299–308

    Article  Google Scholar 

  • Souza GM, Ballester MVR, de Brito Cruz CH et al (2017) The role of bioenergy in a climate-changing world. Environ Develop 23:57–64

    Article  Google Scholar 

  • Strapasson A, Woods J, Chum H et al (2017) On the global limits of bioenergy and land use for climate change mitigation. GCB Bioenerg 9:1721–1735. https://doi.org/10.1111/gcbb.12456

    Article  Google Scholar 

  • Tiedje J, Donohue T (2008) Microbes in the energy grid. Science 320:985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high diversity grassland biomass. Science 314:1598–1600

    Article  PubMed  CAS  Google Scholar 

  • UNEP (United Nations Environment Program) (2009) Towards sustainable production and use of resources: assessing biofuels. Working Group on biofuels of the International Panel on Sustainable Resource Management, UNEP, Paris

    Google Scholar 

  • UNEP (2011) Towards a green economy: pathways to sustainable development and poverty eradication. www.unep.org/greeneconomy

  • U.S. DOE (United States Department of Energy) (2005) Biomass as a feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. http://www.osti.gov/bridge

  • Valentine J, Clifton-Brown J, Hastings A, Robson P, Allison G, Smith P (2012) Food vs. fuel: the use of land for lignocellulosic ‘next generation’ energy crops that minimize competition with primary food production. GCB Bioenerg 4:1–19

    Article  Google Scholar 

  • Renssen Van (2011) A biofuel conundrum. Nature Geosci 1:389–390

    Google Scholar 

  • Whitaker J, Ludley KE, Rowe R, Taylor G, Howard DC (2010) Sources of variability in greenhouse gas and energy balances for biofuel production: a systematic review. GCB Bioenerg 2:99–112

    CAS  Google Scholar 

  • Wigmosta MS, Coleman AM, Skaggs RJ, Huesemann MH, Lane LJ (2011) National microalgae biofuel production potential and resource demand. Water Resour Res 47, W00H04. https://doi.org/10.1029/2010wr009966

  • Wilhelm WW, Johnson JMF, Karlen DL, Lightle TD (2007) Corn stover to sustain soil organic carbon further constrains biomass supply. Agron J 99:1665–1667

    Article  CAS  Google Scholar 

  • Wilts R, Reicosky DC, Allmaras RR, Clapp CE (2004) Long-term corn residue effects: harvest alternatives, soil carbon turnover, and root derived carbon. Soil Sci Soc Am J 68:1342–1351

    Article  CAS  Google Scholar 

  • Wright CK Larson B, Lark TJ, Gibbs HK (2017) Recent grassland losses are concentrated around U.S. ethanol refineries. Environ Res Lett 12:044001

    Article  Google Scholar 

  • Yamaguchi S, Kawada Y, Yuge H, Tanaka K, Imamura S (2017) Development of new carbon resources: production of important chemicals from algal residue. Sci Rep 7:855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang B, Penton R, Xue C et al (2017) Soil depth and crop determinants of bacterial communities under ten biofuel cropping systems. Soil Biol Biochem 112:140–152

    Article  CAS  Google Scholar 

  • Zhu P, Zhuang Q, Eva J, Bernacchi (2017) Importance of biophysical effects on climate warming mitigation potential of biofuel crops over the conterminous United States. GCBBioenerg 9:577–590

    Article  CAS  Google Scholar 

  • Zilberman D (2017) Indirect land use change: much ado about (almost) nothing. GCB Bioenerg 9:485–488

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Lorenz .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lorenz, K., Lal, R. (2018). Biomass and Bioenergy. In: Carbon Sequestration in Agricultural Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-92318-5_7

Download citation

Publish with us

Policies and ethics