Skip to main content

Agroforestry Systems

  • Chapter
  • First Online:
Carbon Sequestration in Agricultural Ecosystems

Abstract

Agroforestry implies the inclusion of trees or other woody perennials within farming systems to capture the interactive benefits of perennials and seasonals, and/or animals for sustainable agricultural production. Among the benefits is the greater ability of agroforestry systems to capture and utilize growth resources (i.e., light, nutrients, water) compared to single-species systems. Agroforestry systems are estimated to cover about 10 million km2 of agricultural land globally. Estimates for carbon (C) sequestration potential above- and belowground over 50 years range between 1.1 and 2.2 Pg (1 Pg = 1Gt = 1015g) C yr−1, but these numbers are highly uncertain. Land-use practices for agroforestry systems are very diverse. In the tropics, this includes alley cropping, homegardens, improved fallows, multi-purpose trees on farms and rangelands, silvopastoral grazing systems, shaded perennial-crop systems, shelterbelts, windbreaks, and taungya (i.e., growing agricultural crops during early stages of establishment of forestry plantations). Furthermore, alley cropping, forest farming, riparian buffer strips, silvopasture, and windbreaks are agroforestry practices in temperate regions . Thus, agroforestry systems are structurally and functionally more complex than either croplands or pastures or tree monocultures. Also, the greater efficiency of growth resource capture and utilization enhances net carbon (C) sequestration in soils under agroforestry compared to those under crops and pastures. Trees capture large amounts of atmospheric carbon dioxide (CO2) during photosynthesis , and transfer a fraction to the soil as surface and subsurface input which may eventually be sequestered. However, data on soil organic carbon (SOC) stocks and sequestration of agroforestry systems are scanty. The few published data vary greatly depending on the agroforestry system, species composition and age, geographical location, environmental factors, and management practices. For example, 1.25 and 302 Mg C ha−1 may be stored to 40 cm depth in a Canadian alley cropping system and to 100 cm depth in a cacao (Theobroma cacao L.) agroforestry system in Brazil, respectively. Furthermore, sequestration rates of up to 7.4 Mg C ha−1 yr−1 in the top 0–10 or 0–20 cm soil depth have been reported. Land-use conversion from less complex systems such as agricultural system to agroforestry systems may, particularly, increase SOC stocks. However, lack of standard methods and procedures does not allow any firm conclusions about the C sequestration potential of agroforestry soils. Furthermore, any generalizations about the SOC sequestration potential of agroforestry systems are hampered by interrelated and site-specific factors such as agroecological conditions and management practices. This chapter begins with a comparison of different tropical and temperate agroforestry practices. This is followed by a discussion about afforestation of denuded lands and associated changes in SOC stocks and its importance for the role of trees for SOC sequestration in agroforests. Then, an overview is given about SOC stocks and sequestration in existing agroforestry systems , and also for those after conversion from other land uses. This chapter concludes with a list of recommendations to enhance SOC sequestration in agroforests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aertsens J, De Nocker L, Gobin A (2013) Valuing the carbon sequestration potential for European agriculture. Land Use Pol 31:584–594

    Article  Google Scholar 

  • Ajit Dhyani SK, Handa AK et al (2017) Estimating carbon sequestration potential of existing agroforestry systems in India. Agroforest Syst 91:1101–1118. https://doi.org/10.1007/s10457-016-9986-z

    Article  Google Scholar 

  • Albrecht A, Cadisch G, Blanchart E, Sitompul SM, Vanlauwe B (2004) Below-ground inputs: relationships with soil quality, soil C storage and soil structure. In: van Noordwijk M, Cadisch G, Ong CK (eds) Below-ground interactions in tropical agroecosystems-concepts and models with multiple plant components. CABI, Wallingford, UK, pp 193–207

    Chapter  Google Scholar 

  • Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ 99:15–27

    Article  CAS  Google Scholar 

  • Amézquita MC, Ibrahim M, Llanderal T, Buurman P, Amézquita E (2005) Carbon sequestration in pastures, silvo-pastoral systems and forests in four regions of the Latin American tropics. J Sust For 21:31–49

    Article  Google Scholar 

  • Araujo ASF, Carvalho LF, Iwata LBF et al (2012) Microbiological process in agroforestry systems. A review. Agron Sustain Dev 32:215–226. https://doi.org/10.1007/s13593-011-0026-0

    Article  CAS  Google Scholar 

  • Baah-Acheamfour M, Carlyle NC, Bork EW, Chang SX (2014) Trees increase soil carbon and its stability in three agroforestry systems in central Alberta, Canada. For Ecol Manage 328:131–139

    Article  Google Scholar 

  • Beer J, Bonnemann A, Chavez W, Fassbender HW, Imbach AC, Martel I (1990) Modelling agroforestry systems of cacao (Theobroma cacao) with laurel (Cordia alliodora) or poro (Erythrina poeppigiana) in Costa Rica. Agroforest Syst 12:229–249

    Article  Google Scholar 

  • Berthrong ST, Jobbágy EG, Jackson RB (2009) A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol Appl 19:2228–2241

    Article  PubMed  Google Scholar 

  • Borland AM, Wullschleger SD, Weston DJ et al (2015) Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy. Plant Cell Environ 38:1833–1849. https://doi.org/10.1111/pce.12479

    Article  PubMed  CAS  Google Scholar 

  • Burgess PJ, Incoll LD, Corry DT, Beaton A, Hart BJ (2004) Poplar (Populus spp) growth and crop yields in a silvoarable experiment at three lowland sites in England. Agroforest Syst 63:157–169

    Article  Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze E-D (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595

    Article  CAS  PubMed  Google Scholar 

  • Cardinael R, Guenet B, Chevallier T et al (2018) High organic inputs explain shallow and deep SOC storage in a long-term agroforestry system—combining experimental and modeling approaches. Biogeosciences 15:297–317

    Article  Google Scholar 

  • Clough Y, Barkmann J, Juhrbandt J et al (2011) Combining high biodiversity with high yields in tropical agroforests. Proc Natl Acad Sci USA 108:8311–8316

    Article  PubMed  Google Scholar 

  • Cusack DF, Chou WW, Yang WH, Harmon ME, Silver WL, Team The LIDET (2009) Controls on long-term root and leaf litter decomposition in neotropical forests. Glob Change Biol 15:1339–1355

    Article  Google Scholar 

  • da Silva EV, de Moraes Gonçalves JL, de Freitas Coelho SR, e Moreira RM, de Miranda Mello SL, Bouillet J-P, Jourdan C, Laclau J-P (2009) Dynamics of fine root distribution after establishment of monospecific and mixed-species plantations of Eucalyptus grandis and Acacia mangium. Plant Soil 325:305–318

    Article  CAS  Google Scholar 

  • De Beenhouwer M, Aerts R, Honnay O (2013) A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agric Ecosyst Environ 175:1–7

    Article  Google Scholar 

  • De Stefano A, Jacobson MG (2017) Soil carbon sequestration in agroforestry systems: a meta-analysis. Agroforest Syst. https://doi.org/10.1007/s10457-017-0147-9

    Article  Google Scholar 

  • Dhillon GS, Gillespie A, Peak D, Van Rees KCJ (2017) Spectroscopic investigation of soil organic matter composition for shelterbelt agroforestry systems. Geoderma 298:1–13

    Article  CAS  Google Scholar 

  • Dixon RK (1995) Agroforestry systems: sources or sinks of greenhouse gases? Agroforest Syst 31:99–116

    Article  Google Scholar 

  • Feliciano D, Ledo A, Hillier J, Nayak DR (2018) Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions? Agric Ecosyst Environ 254:117–129

    Article  Google Scholar 

  • Fonte SJ, Barrios E, Six J (2010) Earthworms, soil fertility and aggregate-associated soil organic matter dynamics in the quesungual agroforestry system. Geoderma 155:320–328

    Article  CAS  Google Scholar 

  • Gama-Rodrigues EF, Nair PKR, Nair VD, Gama-Rodrigues AC, Baligar VC, Machado RCR (2010) Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil. Environ Manage 45:274–283

    Article  PubMed  Google Scholar 

  • Garrity DP, Akinnifesi FK, Ajayi OC, Weldesemayat SG, Mowo JG, Kalinganire A, Larwanou M, Bayala J (2010) Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Sec 2:197–214

    Article  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8:345–360

    Article  Google Scholar 

  • Haggar JP, Tanner EVJ, Beer JW, Kass DCL (1993) Nitrogen dynamics of tropical agroforestry and annual cropping systems. Soil Biol Biochem 25:1363–1378

    Article  CAS  Google Scholar 

  • Haile SG, Nair PKR, Nair VD (2008) Carbon storage of different soil-size fractions in Florida silvopastoral systems. J Environ Qual 37:1789–1797

    Article  CAS  PubMed  Google Scholar 

  • Haile SG, Nair VD, Nair PKR (2010) Contribution of trees to carbon storage in soils of silvopastoral systems in Florida, USA. Glob Change Biol 16:427–438

    Article  Google Scholar 

  • Horwarth W (2007) Carbon cycling and formation of soil organic matter. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry. Academic Press, Burlington, MA, pp 303–339

    Chapter  Google Scholar 

  • Inderjit Malik AU (2002) Chemical ecology of plants: allelopathy in aquatic and terrestrial ecosystems. Birkhäuser-Verlag, Berlin

    Google Scholar 

  • Isaac ME, Gordon AM, Thevathasan NV, Oppong SK, Quashi-Sam J (2005) Temporal changes in soil carbon and nitrogen in west African multistrata agroforestry systems: a chronosequence of pools and fluxes. Agroforest Syst 65:23–31

    Article  Google Scholar 

  • Jackson RB, Lajtha K, Crow SE et al (2017) The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu Rev Ecol Evol Syst 48:419–445

    Article  Google Scholar 

  • Jandl R, Lindner M, Vesterdahl L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268

    Article  CAS  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • John J, Patil RH, Joy M, Nair AM (2006) Methodology of allelopathy research: 1. agroforestry systems. Allelopathy J 18:173–214

    Google Scholar 

  • Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag 140:227–238

    Article  Google Scholar 

  • Johnson EA, Miyanishi K (2008) Testing the assumptions of chronosequences in succession. Ecol Lett 11:419–431

    Article  PubMed  Google Scholar 

  • Johnson JMF, Allmaras RR, Reicosky DC (2006) Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agron J 98:622–636

    Article  CAS  Google Scholar 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agroforest Syst 76:1–10. https://doi.org/10.1007/s10457-009-9229-7

    Article  Google Scholar 

  • Jose S, Gillespie AR, Pallardy SG (2004) Interspecific interactions in temperate agroforestry. Agroforest Syst 61:237–255

    Article  Google Scholar 

  • Kang BT, Grimme H, Lawson TL (1985) Alley cropping sequentially cropped maize and cowpea with Leucaena on a sandy soil in southern Nigeria. Plant Soil 85:267–276

    Article  CAS  Google Scholar 

  • Kim DG, Kirschbaum MUF, Beedy TL (2016) Carbon sequestration and net emissions of CH4 and N2O under agroforestry: Synthesizing available data and suggestions for future studies. Agric Ecosyst Environ 226:65–78

    Article  CAS  Google Scholar 

  • Kizito F, Dragila M, Sène M, Lufafa A, Diedhiou I, Dick RP, Selker JS, Dossa E, Khouma M, Badiane A, Ndiaye S (2006) Seasonal soil water variation and root patterns between two semi-arid shrubs co-existing with Pearl millet in Senegal, West Africa. J Arid Environ 67:436–455

    Article  Google Scholar 

  • Kohli RK, Singh HP, Batish DR, Jose S (2008) Ecological interactions in agroforestry: an overview. In: Batish DR, Kohli RK, Jose S, Singh HP (eds) Ecological basis of agroforestry. CRC Press, Boca Raton, FL, pp 3–14

    Google Scholar 

  • Kumar BM, Nair PKR (2004) The enigma of tropical homegardens. Agroforest Syst 61:135–152

    Article  Google Scholar 

  • Laganière J, Angers D, Paré D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Change Biol 16:439–453

    Article  Google Scholar 

  • Lal (1989) Agroforestry systems and soil surface management of a tropical alfisol. Agroforestry Syst 8:1–6

    Google Scholar 

  • Lal R (2005) Soil carbon sequestration in natural and managed tropical forest ecosystems. J Sust For 21:1–30

    Article  Google Scholar 

  • Lal R, Follett RF (2009) Soils and climate change. In: Lal R, Follett RF (eds) Soil carbon sequestration and the greenhouse effect. SSSA Special Publication 57, 2nd edn. Madison, WI, xxi–xxviii

    Google Scholar 

  • Lasco RD, Delfino RJP, Espaldon MLO (2014) Agroforestry systems: helping smallholders adapt to climate risks while mitigating climate change. WIREs Clim Change 5:825–833. https://doi.org/10.1002/wcc.301

    Article  Google Scholar 

  • Liste H-H, White JC (2008) Plant hydraulic lift of soil water—implications for crop production and land restoration. Plant Soil 313:1–17

    Article  CAS  Google Scholar 

  • Long AJ, Nair PKR (1999) Trees outside forests: agro-, community-, and urban forestry. New For 17:145–174

    Article  Google Scholar 

  • Lorenz K, Lal R (2005) The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv Agron 88:35–66

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R (2010) Carbon sequestration in forest ecosystems. Springer, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Luedeling E, Kindt R, Huth NI, Koenig K (2014) Agroforestry systems in a changing climate—challenges in projecting future performance. Curr Op Environ Sustain 6:1–7

    Article  Google Scholar 

  • Mackey B, Prentice IC, Steffen W et al (2013) Untangling the confusion around land carbon science and climate change mitigation policy. Nat Clim Change 3:552–557. https://doi.org/10.1038/NCLIMATE1804

    Article  CAS  Google Scholar 

  • Meinen C, Hertel D, Leuschner C (2009) Root growth and recovery in temperate broad-leaved forest stands differing in tree species diversity. Ecosystems 12:1103–1116

    Article  Google Scholar 

  • Mendez-Millan M, Dignac M-F, Rumpel C, Rasse DP, Derenne S (2010) Molecular dynamics of shoot vs. root biomarkers in an agricultural soil estimated by natural abundance 13C labeling. Soil Biol Biochem 42:169–177

    Article  CAS  Google Scholar 

  • Mitchell RJ, Campbell CD, Chapman SJ, Cameron CM (2010) The ecological engineering impact of a single tree species on the soil microbial community. J Ecol 98:50–61

    Article  CAS  Google Scholar 

  • Munroe JW, Isaac ME (2014) N2-fixing trees and the transfer of fixed-N for sustainable agroforestry: a review. Agron Sustain Dev 34:417–427. https://doi.org/10.1007/s13593-013-0190-5

    Article  Google Scholar 

  • Muschler RG, Bonnemann A (1997) Potentials and limitations of agroforestry for changing land-use in the tropics: experiences from Central America. For Ecol Manage 91:61–73

    Article  Google Scholar 

  • Nair PKR (1987) Agroforestry systems inventory. Agroforest Syst 5:301–317. https://doi.org/10.1007/BF00119128

    Article  Google Scholar 

  • Nair PKR (1991) State-of-the-art of agroforestry systems. For Ecol Manage 45:5–29

    Article  Google Scholar 

  • Nair PKR (2012) Climate change mitigation: A low-hanging fruit of agroforestry. In: Nair PKR, Garrity D (eds) Agroforestry—the future of global land use, advances in agroforestry 9. Springer, Dordrecht, Netherlands, pp 31–66. https://doi.org/10.1007/978-94-007-4676-3_7

    Chapter  Google Scholar 

  • Nair PKR, Gordon AM, Mosquera-Losada M-R (2008) Agroforestry. In: Jorgensen SE, Fath BD (eds) Ecological engineering, encyclopedia of ecology, vol 1. Elsevier. Oxford, UK, pp 101–110

    Chapter  Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23

    Article  CAS  Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. Adv Agron 108:237–307

    Article  CAS  Google Scholar 

  • Oelbermann M, Voroney RP, Gordon AM, Kass DCL, Schlönvoigt AM, Thevathasan NV (2006) Soil carbon dynamics and residue stabilization in a Costa Rican and southern Canadian alley cropping system. Agroforest Syst 68:27–36

    Article  Google Scholar 

  • Okigbo BN (1985) Improved permanent production systems as an alternative to shifting intermittent cultivation. In: Improved production systems as an alternative to shifting cultivation, FAO Soils Bulletin 53, FAO, Rome, Italy, pp 1–100

    Google Scholar 

  • Ong CK, Kho RM, Radersma S (2004) Ecological interactions in multispecies agroecosystems: concepts and rules. In: Ong CK, Huxely P (eds) Tree-crop interactions, a physiological approach. CAB International, Wallingford, UK, pp 1–15

    Google Scholar 

  • Pardon P, Reubens B, Reheul D et al (2017) Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agric Ecosyst Environ 247:98–111

    Article  CAS  Google Scholar 

  • Parrotta JA (1999) Productivity, nutrient cycling and succession in single- and mixed-species stands of Casuarina equisetifolia, Eucalyptus robusta and Leucaena leucocephala in Puerto Rico. For Ecol Manag 124:45–77

    Article  Google Scholar 

  • Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manag 168:241–257

    Article  Google Scholar 

  • Peichl M, Thevathasan NV, Gordon AM, Huss J, Abohassan RA (2006) Carbon sequestration potentials in temperate tree-based intercropping systems, southern Ontario, Canada. Agroforest Syst 66:243–257

    Article  Google Scholar 

  • Perry CH, Woodall CW, Liknes GC, Schoeneberger MM (2009) Filling the gap: improving estimates of working tree resources in agricultural landscapes. Agroforest Syst 75:91–101

    Article  Google Scholar 

  • Pinho RC, Miller RP, Alfaia SS (2012) Agroforestry and the improvement of soil fertility: a view from Amazonia. Appl Environ Sci Article 2012:616383. https://doi.org/10.1155/2012/616383

    Article  Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Change Biol 6:317–327

    Article  Google Scholar 

  • Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–149

    Article  CAS  Google Scholar 

  • Preston CM, Nault JR, Trofymow JA (2009a) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. 13C abundance, solid-state 13C NMR spectroscopy and the meaning of “lignin”. Ecosystems 12:1078–1102

    Article  CAS  Google Scholar 

  • Preston CM, Nault JR, Trofymow JA, Smyth C, CIDET Working Group (2009b) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 1. Elemental composition, tannins, phenolics, and proximate fractions. Ecosystems 12:1053–1077

    Article  CAS  Google Scholar 

  • Rao MR, Schroth G, Williams SE, Namirembe S, Schaller M, Wilson J (2004) Managing bewlo-ground interactions in agroecosystems. In: Ong CK, Huxely P (eds) Tree-crop interactions, a physiological approach. CAB International, Wallingford, UK, pp 309–328

    Google Scholar 

  • Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant Soil 269:341–356

    Article  CAS  Google Scholar 

  • Resh SC, Binkley D, Parrotta JA (2002) Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5:217–231

    Article  CAS  Google Scholar 

  • Rigueiro-Rodriguez A, McAdam JH, Mosquera-Losada MR (2008) Agroforestry in Europe. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Ritter E (2007) Carbon, nitrogen and phosphorus in volcanic soils following afforestation with native birch (Betula pubescens) and introduced larch (Larix sibirica) in Iceland. Plant Soil 295:239–251

    Article  CAS  Google Scholar 

  • Rivest D, Cogliastro A, Olivier A (2009) Tree-based intercropping systems increase growth and nutrient status of hybrid poplar: a case study from two Northeastern American experiments. J Environ Manage 91:432–440

    Article  PubMed  Google Scholar 

  • Rizvi SJH, Tahir M, Rizvi V, Kohli RK, Ansari A (1999) Allelopathic interactions in agroforestry systems. Crit Rev Plant Sci 19:773–796

    Article  Google Scholar 

  • Rosenstock TS, Tully KL, Arias-Navarro C et al (2014) Agroforestry with N2-fixing trees: sustainable development’s friend or foe? Curr Op Environ Sustain 6:15–21

    Article  Google Scholar 

  • Saha SK, Nair PKR, Nair VD, Kumar BM (2010) Carbon storage in relation to soil size-fractions under tropical tree-based land-use systems. Plant Soil 328:433–446

    Article  CAS  Google Scholar 

  • Scherer-Lorenzen M, Potvin C, Koricheva J, Schmid B, Hector A, Bornik Z, Reynolds G, Schulze E-D (2005) The design of experimental tree plantations for functional biodiversity research. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity and function. Ecological Studies, vol 176. Springer, Berlin, pp 347–376

    Google Scholar 

  • Scheu S, Schauermann J (1994) Decomposition of roots and twigs: effects of wood type (beech and ash), diameter, site of exposure and macrofauna exclusion. Plant Soil 241:155–176

    Google Scholar 

  • Schroth G, Krauss U, Gasparotto L, Aguilar JAD, Vohland K (2000) Pests and diseases in agroforestry systems of the humid tropics. Agroforest Syst 50:199–241

    Article  Google Scholar 

  • Sinacore K, Hall JS, Potvin C et al (2017) Unearthing the hidden world of roots: root biomass and architecture differ among species within the same guild. PLoS ONE 12:e0185934. https://doi.org/10.1371/journal.pone.0185934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stockmann U, Adams MA, Crawford JW et al (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99

    Article  CAS  Google Scholar 

  • Sollins P, Swanston C, Kramer M (2007) Stabilization and destabilization of soil organic matter-a new focus. Biogeochemistry 85:1–7

    Article  Google Scholar 

  • Soto-Pinto L, Anzueto M, Mendoza J, Ferrer GJ, de Jong B (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agroforest Syst 78:39–51

    Article  Google Scholar 

  • Takimoto A, Nair PKR, Nair VD (2008) Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agri Ecosyst Environ 125:159–166

    Article  CAS  Google Scholar 

  • Torralba M, Fagerholm N, Burgess PJ, Moreno G, Plieninger T (2016) Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agric Ecosyst Environ 230:150–161

    Article  Google Scholar 

  • Vagen TG, Lal R, Singh BR (2004) Soil carbon sequestration in sub-Saharan Africa: a review. Land Degrad Develop 16:53–71

    Article  Google Scholar 

  • Van Noordwijk M, Lawson G, Soumare A, Groot JJR, Hairiah K (1996) Root distribution of trees and crops: competition and/or complementarity. In: Ong CK, Huxely P (eds) Tree-crop interactions, a physiological approach. CAB International, Wallingford, UK, pp 319–364

    Google Scholar 

  • Vinceti B, Termote C, Ickowitz A et al (2013) The contribution of forests and trees to sustainable diets. Sustainability 5:4797–4824. https://doi.org/10.3390/su5114797

    Article  Google Scholar 

  • Young A (1997) Agroforestry for soil management. C.A.B International and ICRAF, Wallingford, U.K.

    Google Scholar 

  • Zhang W, Ahanbieke P, Wang BJ et al (2013) Root distribution and interactions in jujube tree/wheat agroforestry system. Agroforest Syst 87:929–939. https://doi.org/10.1007/s10457-013-9609-x

    Article  Google Scholar 

  • Zomer RJ, Neufeldt H, Xu J, et al (2017) Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets. Sci Rep 6:29987. https://doi.org/10.1038/srep29987

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Lorenz .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lorenz, K., Lal, R. (2018). Agroforestry Systems. In: Carbon Sequestration in Agricultural Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-92318-5_6

Download citation

Publish with us

Policies and ethics