Skip to main content

Carbon Sequestration in Wetland Soils

  • Chapter
  • First Online:
Carbon Sequestration in Agricultural Ecosystems

Abstract

Crops adapted to wetland conditions such as rice (Oryza sativa L.) have been cultivated on waterlogged anoxic soils for millennia. Grazing of livestock is another important agricultural activity in wetlands. Wetlands including peatlands may cover up to 26.9 million km2 globally, and wetlands may contain up to 158 Pg soil organic carbon (SOC) to 1 m depth, but knowledge on wetland distribution, extent, and volume needs to be strengthened. Peatlands are organic-rich wetlands and cover ~4 million km2 with large areas in the Northern Hemisphere. Over centuries to millennia, organic soils of peatlands have accumulated globally >750 Pg of carbon (C) as peat, sometimes to several meters depth as decomposition rates are greatly reduced under wet and acidic soil conditions. Thus, peatlands while covering only 3% of the global ice-free land area store more than one-fourth of the global SOC stock. Stocks in northern peatlands alone may store >600 Pg C, and their utilization for agriculture may release large amounts of carbon dioxide (CO2) by peat oxidation. For example, ~1 Pg CO2 is emitted annually from drained peatlands (including emissions from fire ), with high emissions especially from drained organic soils in tropical regions often for cultivation of oil palms (Elaeis guineensis Jacq.). Further, cumulative net emissions from global peatland use have been estimated at 6 Pg C for the period 1850–2015. Wetlands are also among the major biogenic methane (CH4) sources contributing to about 30% of the total CH4 emissions and will increasingly contribute to the projected climate change . Further, C losses from wetlands may also increase in the future because of the projected climate change . Thus, sustainable intensification (SI) should be applied to reduce CH4 and C losses from wetlands. Options include, for example, restoring drained agricultural land-use types to flooded conditions, improved fertilizer and water management of paddy fields, and breeding of new crop cultivars better adapted to anoxic wetland soil conditions. In this respect, paludiculture of wetlands is promising as a suitable agricultural practice with the cobenefit of C sequestration. This chapter begins with a general overview on wetlands and peatlands. Then, the peatland C balance is discussed in more detail. Agricultural use and management of wetland soils are presented in the following section. The final section discusses options for more ‘climate-friendly’ agriculture in wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpana S, Vishwakarma P, Adhya TK, Inubushi K, Dubey SK (2017) Molecular ecological perspective of methanogenic archaeal community in rice agroecosystem. Sci Tot Environ 596–597:136–146

    Article  CAS  Google Scholar 

  • Angle JC, Morin TH, Solden LM et al (2017) Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nat Commun 8:1567. https://doi.org/10.1038/s41467-017-01753-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aufdenkampe AK, Mayorga E, Raymond PA et al (2011) Riverine coupling of biogeochemical cycles between land, oceans and atmosphere. Front Ecol Environ 9:53–60

    Article  Google Scholar 

  • Bader C, Müller M, Szidat S, Schulin R, Leifel J (2018) Response of peat decomposition to corn straw addition in managed organic soils. Geoderma 309:75–83

    Article  CAS  Google Scholar 

  • Biancalani R, Avagyan A (eds) (2014) Towards climate-responsible peatlands management. Mitigation of climate change in agriculture Series 9. FAO, Rome

    Google Scholar 

  • Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Change Biol 19:1325–1346

    Article  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2007) Wetlands. Chapter 13 and Appendix F. In: King AW, Dilling L, Zimmerman G, Fairman D, Houghton R, Marland G, Rose A, Wilbanks T (eds) The first state of the carbon cycle report (SOCCR): The North American carbon budget and implications for the global carbon cycle. Washington, DC: U.S. Climate Change Science Program, 177–192, pp 139–148

    Google Scholar 

  • Butterbach-Bahl K, Wolf B (2017) Warming from freezing soils. Nat Geosci 10:248–249

    Article  CAS  Google Scholar 

  • Chaudhary N, Miller PA, Smith B (2017) Modelling past, present and future peatland carbon accumulation across the pan-Arctic region. Biogeosciences 14:4023–4044

    Article  Google Scholar 

  • Ciais P, Sabine C, Bala G, et al (2013) Carbon and Other Biogeochemical Cycles. In: Stocker TF, Qin D, Plattner GK, et al (eds) Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Dargie GC, Lewis SL, Lawson IT, et al. (2017) Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542:86+

    Article  CAS  PubMed  Google Scholar 

  • Davidson KE, Fowler MS, Skov MW et al (2017) Livestock grazing alters multiple ecosystem properties and services in salt marshes: a meta-analysis. J Appl Ecol 54:1395–1405. https://doi.org/10.1111/1365-2664.12892

    Article  CAS  Google Scholar 

  • Davidson NC (2014) How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar Freshw Res 65:934–941

    Article  Google Scholar 

  • Davis TJ (1994) The Ramsar Convention manual: a guide to the convention on wetlands of international importance, especially as waterfowl habitat. Ramsar Convention Bureau, Gland, Switzerland

    Google Scholar 

  • Draper FC, Roucoux KH, Lawson IT et al (2014) The distribution and amount of carbon in the largest peatland complex in Amazonia. Environ Res Lett 9:124017

    Article  CAS  Google Scholar 

  • Eickenscheidt T, Heinichen J, Drösler M (2015) The greenhouse gas balance of a drained fen peatland is mainly controlled by land-use rather than soil organic carbon content. Biogeosciences 12:5161–5184

    Article  Google Scholar 

  • Elder JW, Lal R (2008) Tillage effects on gaseous emissions from an intensively farmed organic soil in North Central Ohio. Soil Till Res 98:45–55

    Article  Google Scholar 

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238

    Article  CAS  PubMed  Google Scholar 

  • Finlayson CM, Davidson NC, Spiers AG, Stevenson NJ (1999) Global wetland inventory—current status and future priorities. Mar Freshwater Res 50:717–727

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations FAO (2014) Agriculture, forestry and other land use emissions by sources and removals by sinks – 1990–2011 Analysis. Tubiello FN, Salvatore M, Cóndor Golec RD, et al. ESS Working Paper 2, Rome, 87pp

    Google Scholar 

  • Food and Agriculture Organization of the United Nations FAO (2015) World reference base for soil resources 2014. World Soil Resources Report 106, Rome

    Google Scholar 

  • Frolking S, Li CS, Braswell R, Fuglestvedt J (2004) Short- and long-term greenhouse gas and radiative forcing impacts of changing water management in Asian rice paddies. Glob Change Biol 10:1180–1196

    Article  Google Scholar 

  • Frolking S, Talbot J, Jones M et al (2011) Peatlands in the Earth’s 21st century climate system. Environ Res 19:371–396

    CAS  Google Scholar 

  • Gerber JS, Carlson KM, Makowski D et al (2016) Spatially explicit estimates of N2O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management. Glob Change Biol 22:3383–3394

    Article  Google Scholar 

  • Gopal B, Masing V (1990) Biology and ecology. In: Pattan BC (ed) Wetlands and shallow continental water bodies, vol 1. SPB Academic Publishing, The Netherlands, pp 91–239

    Google Scholar 

  • Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94:2362–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gumbricht T, Roman-Cuesta RM, Verchot L et al (2017) An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob Change Biol 23:3581–3599. https://doi.org/10.1111/gcb.13689

    Article  Google Scholar 

  • Hadden D, Grelle A (2017) The impact of cultivation on CO2 and CH4 fluxes over organic soils in Sweden. Agric For Meteorol 243:1–8

    Article  Google Scholar 

  • Hidlebaugh TA (1982) Subsidence of the cultivated organic soils of the Celeryville-Willard marsh of North-Central Ohio. Master of Arts Thesis. Bowling Green State University

    Google Scholar 

  • Hinson AL, Feagin RA, Eriksson M et al (2017) The spatial distribution of soil organic carbon in tidal wetland soils of the continental United States. Glob Change Biol 23:5468–5480. https://doi.org/10.1111/gcb.13811

    Article  Google Scholar 

  • Hooijer A, Page S, Canadell JG et al (2010) Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7:1505–1514

    Article  CAS  Google Scholar 

  • Hooijer A, Page S, Jauhiainen J et al (2012) Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9:1053–1071

    Article  CAS  Google Scholar 

  • LeB Hooke R, Martín-Duque JF, Pedraza J (2012) Land transformation by humans: a review. GSA Today 22:4–10

    Google Scholar 

  • Houghton RA, Nassikas AA (2017) Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob Biogeochem Cycles 31:456–472

    Article  CAS  Google Scholar 

  • Howard J, Hoyt S, Isensee K, Telszewski M, Pidgeon E (2014) Coastal blue carbon: methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature Arlington, Virginia, USA, 184

    Google Scholar 

  • IPCC (2014) 2013 Supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: wetlands. In: Hiraishi T, Krug T, Tanabe K, et al (eds) IPCC. Switzerland

    Google Scholar 

  • Ise T, Dunn AL, Wosfy SC, Moorcroft PR (2008) High sensitivity of peat decomposition to climate change through water-table feedback. Nat Geosci 1:763–766

    Article  CAS  Google Scholar 

  • Jackson RB, Lajtha K, Crow SE et al (2017) The ecology of soil carbon: pools, vulnerabili-ties, and biotic and abiotic controls. Annu Rev Ecol Evol Syst 48:419–445

    Article  Google Scholar 

  • Joosten H (2010) The global peatland CO2 picture. Wetlands International. https://www.wetlands.org/publications/the-global-peatland-co2-picture/

  • Joosten H, Gaudig G, Krawczynski R, et al. (2015) Managing soil carbon in Europe: paludicultures as a new perspective for peatlands. In: Banwart SA, Noellemeyer E, Milne E (eds) Soil carbon: science, management and policy for multiple benefits. CAB International, pp 297–306

    Google Scholar 

  • Jungkunst HF, Krüger JP, Heitkamp F et al (2012) Accounting more precisely for peat and other soil carbon resources. In: Lal R, Lorenz K, Hüttl RF, Schneider BU, von Braun J (eds) Recarbonization of the biosphere—ecosystems and the global carbon cycle. Springer, Dordrecht, The Netherlands, pp 127–157

    Chapter  Google Scholar 

  • Junk W, An S, Finlayson C et al (2013) Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquat Sci 75:151–167

    Article  CAS  Google Scholar 

  • Junk W, Brown M, Campbell C et al (2006) The comparative biodiversity of seven globally important wetlands: a synthesis. Aquat Sci 68:400–414

    Article  Google Scholar 

  • Keller JK, Medvedeff CA (2016) Soil organic matter. In: Vepraskas MJ, Craft CB (eds) Wetland soils: genesis, hydrology, landscapes, and classification. CRC Press, Boca Raton, FL, pp 165–188

    Google Scholar 

  • Kirwan ML, Mudd SM (2012) Response of salt-marsh carbon accumulation to climate change. Nature 489:550–553

    Article  CAS  PubMed  Google Scholar 

  • Knox SH, Sturtevant C, Matthes JH et al (2015) Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. Global Change Biol 21:750–765

    Article  Google Scholar 

  • Köchy M, Hiederer R, Freibauer A (2015) Global distribution of soil organic carbon—Part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. SOIL 1:351–365

    Article  CAS  Google Scholar 

  • Lee SC, Christen A, Black AT et al (2017) Annual greenhouse gas budget for a bog ecosystem undergoing restoration by rewetting. Biogeosciences 14:2799–2814

    Article  Google Scholar 

  • Limpens J, Berendse F, Blodau C et al (2008) Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeosciences 5:1475–1491

    Article  CAS  Google Scholar 

  • Loisel J, van Bellen S, Pelletier L et al (2017) Insights and issues with estimating northern peatland carbon stocks and fluxes since the last glacial maximum. Earth Sci Rev 165:59–80

    Article  CAS  Google Scholar 

  • McNorton J, Gloor E, Wilson C, et al. (2016) Role of regional wetland emissions in atmospheric methane variability. Geophys Res Lett 43:11,433–11,444

    Article  CAS  Google Scholar 

  • Melton J, Wania R, Hodson E et al (2013) Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project. (WETCHIMP). Biogeosciences 10:753–782

    Article  Google Scholar 

  • Meng L, Roulet N, Zhuang Q, Christensen TR, Frolking S (2016) Focus on the impact of climate change on wetland ecosystems and carbon dynamics. Environ Res Lett 11:100201

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2015) Wetlands, 5th edn. Wiley, Hoboken, NJ

    Google Scholar 

  • Mitsch WJ, Gosselink JG, Anderson CJ, Zhang L (2009) Wetland Ecosystems. Wiley, Hoboken, NJ

    Google Scholar 

  • Myers-Smith IH, Harden JW, Wilmking M et al (2008) Wetland succession in a permafrost collapse: interactions between fire and thermokarst. Biogeosciences 5:1273–1286

    Article  CAS  Google Scholar 

  • Moore S, Evans CD, Page SE et al (2013) Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493:660–663

    Article  CAS  PubMed  Google Scholar 

  • Mueller CW, Hoeschen C, Steffens M et al (2017) Microscale soil structures foster organic matter stabilization in permafrost soils. Geoderma 293:44–53

    Article  CAS  Google Scholar 

  • Osvald H (1937) Myrar och myrodling. Kooperativa förbundets bokförlag, Stockholm (In Swedish)

    Google Scholar 

  • Oztas T, Fayetorbay F (2003) Effect of freezing and thawing processes on soil aggregate stability. CATENA 52:1–8

    Article  CAS  Google Scholar 

  • Page SE, Rieley JO, Banks C (2011) Global and regional importance of the tropical peatland carbon pool. Glob Change Biol 17:798–818

    Article  Google Scholar 

  • Page SE, Siegert F, Rieley JO et al (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65

    Article  CAS  PubMed  Google Scholar 

  • Page SE, Wűst RAJ, Weiss D et al (2004) A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J Quaternary Sci 19:625–635

    Article  Google Scholar 

  • Petrescu AMR, Lohila A, Tuovinen JP et al (2015) The uncertain climate footprint of wetlands under human pressure. Proc Natl Acad Sci USA 112:4594–4599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsar (2013) The Ramsar convention manual: a guide to the convention on wetlands, 6th ed. Retrieved from http://www.ramsar.org/sites/default/files/documents/library/manual6-2013-e.pdf

  • Ramsar Convention on Wetlands; FAO; International Water Management Institute (IWMI) (2014) Wetlands & agriculture: Partners for growth. Ramsar Convention on Wetlands; Gland, Switzerland; FAO, Rome, Italy; International Water Management Institute (IWMI), Colombo, Sri Lanka. http://www.ramsar.org/sites/default/files/wwd14_leaflet_en.pdf

  • Robinson DA, Panagos P, Borrelli P et al (2017) Soil natural capital in Europe; a framework for state and change assessment. Sci Rep. https://doi.org/10.1038/s41598-017-06819-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Robroek BJM, Jassey VEJ, Payne RJ et al (2017) Taxonomic and functional turnover are decoupled in European peat bogs. Nat Commun 8:1161. https://doi.org/10.1038/s41467-017-01350-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rocha A, Goulden M (2009) Why is marsh productivity so high? New insights from eddy covariance and biomass measurements in a Typha marsh. Agric For Meteorol 49:159–168

    Article  Google Scholar 

  • Roulet NT, Lafleur PM, Richard PJH et al (2007) Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob Change Biol 13:397–411

    Article  Google Scholar 

  • Rydin H, Jeglum J (2006) The Biology of Peatlands. Oxford University Press, Oxford

    Book  Google Scholar 

  • Schlesinger WH, Bernhardt ES (2013) Wetland ecosystems. Schlesinger WH, Bernhardt ES, Biogeochemistry: an analysis of global change. Academic Press, Amsterdam, Netherlands, pp 233–273

    Google Scholar 

  • Schrier-Uijl AP, Kroon PS, Hendriks DMD et al (2014) Agricultural peatlands: towards a greenhouse gas sink—a synthesis of a Dutch landscape study. Biogeosciences 11:4559–4576. https://doi.org/10.5194/bg-11-4559-2014

    Article  CAS  Google Scholar 

  • Settele J, Scholes R, Betts R, et al (2014) In Field CB, Barros VR, Dokken DJ, et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 271–359

    Google Scholar 

  • Sjögersten S, Black CR, Evers S et al (2015) Tropical wetlands: a missing link in the global carbon cycle? Global Biogeochem Cycles 28:1371–1386

    Article  CAS  Google Scholar 

  • Smith P, Bustamante M, Ahammad H, et al (2014) Agriculture, forestry and other land use (AFOLU). In: Edenhofer OR, Pichs-Madruga Y, Sokona E, et al (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Stocker BD, Yu Z, Massa C, Joos F (2017) Holocene peatland and ice-core data constraints on the timing and magnitude of CO2 emissions from past land use. Proc Natl Acad Sci USA 114:1492–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strack M (ed) (2008) Peatlands and climate change. International Peat Society, Jyväskylä, Finland

    Google Scholar 

  • Tanneberger F, Tegetmeyer C, Busse S et al (2017) The peatland map of Europe. Mires Peat 19:1–17. https://doi.org/10.19189/MaP.2016.OMB.264

    Article  Google Scholar 

  • Tchebakova NM, Parfenova EI, Lysanova GI, Soja AJ (2011) Agroclimatic potential across central Siberia in an altered twenty-first century. Environ Res Lett 6:045207. https://doi.org/10.1088/1748-9326/6/4/045207

    Article  Google Scholar 

  • Troell M, Naylor RL, Metian M et al (2014) Does aquaculture add resilience to the global food system? Proc Natl Acad Sci USA 111:13257–13263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tubiello FN, Biancalani R, Salvatore M, Rossi S, Conchedda G (2016) A worldwide assessment of greenhouse gas emissions from drained organic soils. Sustainability 8:371. https://doi.org/10.3390/su8040371

    Article  Google Scholar 

  • Turetsky MR, Kotowska A, Bubier J et al (2014) A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Glob Change Biol 20:2183–2197

    Article  Google Scholar 

  • van der Gon HG (1999) Changes in CH4 emission from rice fields from 1960 to 1990s. 2. The declining use of organic inputs in rice farming. Glob Biogeochem Cycles 13:1053–1062

    Article  Google Scholar 

  • Verhoeven JTA, Setter TL (2010) Agricultural use of wetlands: opportunities and limitations. Ann Bot 105:155–163

    Article  PubMed  Google Scholar 

  • Walz J, Knoblauch C, Böhme L, Pfeiffer EM (2017) Regulation of soil organic matter decomposition in permafrost affected Siberian tundra soils—impact of oxygen availability, freezing and thawing, temperature, and labile organic matter. Soil Biol Biochem 110:34–43

    Article  CAS  Google Scholar 

  • Wang H, Richardson CJ, Ho M (2015) Dual controls on carbon loss during drought in peatlands. Nat Clim Change 5:584–588

    Article  CAS  Google Scholar 

  • Warren M, Hergoualc’h K, Kauffman JB, Murdiyarso D, Kolka R (2017) An appraisal of Indonesia’s immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion. Carbon Balance Manage 12:12. https://doi.org/10.1186/s13021-017-0080-2

  • Wijedasa LS, Jauhiainen J, Kononen M et al (2017) Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences. Glob Change Biol 3:977–982. https://doi.org/10.1111/gcb.13516

    Article  Google Scholar 

  • Wilson D, Farrell CA, Fallon D et al (2016) Multiyear greenhouse gas balances at a rewetted temperate peatland. Glob Change Biol 22:4080–4095. https://doi.org/10.1111/gcb.13325

    Article  Google Scholar 

  • Wu X, Cao R, Wei X et al (2017) Soil drainage facilitates earthworm invasion and subsequent carbon loss from peatland soil. J Appl Ecol 54:1291–1300. https://doi.org/10.1111/1365-2664.12894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Morris PJ, Liu J, Holden J (2018) PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. CATENA 160:134–140

    Article  Google Scholar 

  • Yang G, Peng C, Chen H et al (2017) Qinghai-Tibetan Plateau peatland sustainable utilization under anthropogenic disturbances and climate change. Ecosyst Health Sustain 3:e01263

    Article  Google Scholar 

  • Yu Z (2011) Holocene carbon flux histories of the world’s peatlands: global carbon-cycle implications. Holocene 21:761–774

    Article  Google Scholar 

  • Yu ZC (2012) Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9:4071–4085

    Article  CAS  Google Scholar 

  • Zhang Z, Zimmermann NE, Stenke A et al (2017) Emerging role of wetland methane emissions in driving 21st century climate change. Proc Natl Acad Sci USA 114:9647–9652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang Q, Melillo J, Kicklighter D, et al (2004) Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: a retrospective analysis with a process-based biogeochemistry model. Global Biogeochem Cy 18, GB3010. https://doi.org/10.1029/2004gb002239

    Article  CAS  Google Scholar 

  • Zona D, Lipson DA, Paw KT, et al (2012) Increased CO2 loss from vegetated drained lake tundra ecosystems due to flooding. Global Biogeochem Cycles 26:GB2004. https://doi.org/10.1029/2011gb004037

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Lorenz .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lorenz, K., Lal, R. (2018). Carbon Sequestration in Wetland Soils. In: Carbon Sequestration in Agricultural Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-92318-5_5

Download citation

Publish with us

Policies and ethics