Skip to main content

Novel Ablative Therapies for Renal Tumors

  • Chapter
  • First Online:
Diagnosis and Surgical Management of Renal Tumors

Abstract

Major guidelines on the treatment of renal tumors now include indications for the use of thermal ablation in select patient populations. Renal tumor ablation is most commonly performed with either cryoablation or radiofrequency ablation. In recent years, a number of novel alternative ablation therapies have been developed including irreversible electroporation, microwave ablation, high-intensity focused ultrasound, stereotactic ablation radiation, and photodynamic therapy. This chapter examines the current status of each of these ablative therapies for the treatment of renal tumors. Technological aspects of each novel ablation therapy are described. When available, results of animal studies and phase I–II or observational human studies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choueri TK, Schutz FA, Hevelone ND, Nguyen PL, Lipsitz SR, Williams SB, Silverman SG, Hu JC. Thermal ablation vs surgery for localized kidney cancer: a Surveillance, Epidemiology, and End Results (SEER) database analysis. Urology. 2011;78:93–8.

    Article  Google Scholar 

  2. Laguna MP, Algaba F, Cadeddu J, Clayman R, Gill I, Gueglio G, Hohenfellner M, Joyce A, Landman J, Lee B, van Poppel H. Current patterns of presentation and treatment of renal masses: a clinical research office of the endourological society prospective study. J Endourol. 2014;28:861–70.

    Article  PubMed  Google Scholar 

  3. Finelli A, Ismaila N, Bro B, Durack J, Eggener S, Evans A, Gill I, Graham D, Huang W, Jewett MAS, Latcha S, Lowrance W, Rosner M, Shayegan B, Thompson HR, Uzzo R, Russo P. Management of Small Renal Masses: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2017;35:1–13.

    Article  Google Scholar 

  4. Ljungberg B, Bensalah K, Canfield S, et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol. 2015;67:913–24.

    Article  PubMed  Google Scholar 

  5. Campbell S, Uzzo RG, Allaf ME, et al. Renal mass and localized renal cancer: AUA guideline. J Urol. 2017;198:520–9.

    Article  PubMed  Google Scholar 

  6. Laguna MP, Walz J, Atwell T, Autorino R, Cestari A, Gahan J, Klatte T, van Lienden K, Teber D, Wagstaff PGK, Zondervan PJ. Chapter 8: Available ablation energies to treat small renal masses. In: Sanchez-Salas R, Desai M, editors. Image-guided therapies for prostate and kidney cancers. A joint SIU-ICUD International Consultation. Melbourne. 15–18 Oct 2015. p. 521–90. Available at: http://www.siu-urology.org/society/siu-icud. Accessed 14 July 2017.

  7. Trudeau V, Becker A, Roghmann F, et al. Local tumor destruction in renal cell carcinoma – an inpatient population-based study. Urol Oncol. 2014;32:54.e1–7.

    Article  Google Scholar 

  8. Patel HD, Pierorazio PM, Johnson MH, et al. Renal functional outcomes after surgery, ablation and active surveillance of localized renal tumors: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2017;12:1057–69.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lee EW, Wong D, Prikhodko SV, Perez A, Tran C, Loh CT, et al. Electron microscopic demonstration and evaluation of irreversible electroporation-induced nanopores on hepatocyte membranes. J Vasc Interv Radiol. 2012;23(1):107–13.

    Article  PubMed  Google Scholar 

  10. Chang DC, Reese TS. Changes in membrane-structure induced by electroporation as revealed by rapid-freezing electron-microscopy. Biophys J. 1990;58(1):1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wagstaff PG, de Bruin DM, Zondervan PJ, Savci Heijink CD, Engelbrecht MR, van Delden OM, et al. The efficacy and safety of irreversible electroporation for the ablation of renal masses: a prospective, human, in-vivo study protocol. BMC Cancer. 2015;15:165.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Al-Sakere B, Andre F, Bernat C, Connault E, Opolon P, Davalos RV, et al. Tumor ablation with irreversible electroporation. PLoS One. 2007;2(11):e1135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Olweny EO, Kapur P, Tan YK, Park SK, Adibi M, Cadeddu JA. Irreversible electroporation: evaluation of nonthermal and thermal ablative capabilities in the porcine kidney. Urology. 2013;81(3):679–84.

    Article  PubMed  Google Scholar 

  14. Pech M, Janitzky A, Wendler JJ, Strang C, Blaschke S, Dudeck O, et al. Irreversible electroporation of renal cell carcinoma: a first-in-man phase I clinical study. Cardiovasc Intervent Radiol. 2011;34(1):132–8.

    Article  PubMed  Google Scholar 

  15. van Gemert MJ, Wagstaff PG, de Bruin DM, van Leeuwen TG, van der Wal AC, Heger M, et al. Irreversible electroporation: just another form of thermal therapy? Prostate. 2015;75:332–5.

    Article  PubMed  Google Scholar 

  16. Davalos RV, Bhonsle S, Neal RE. Implications and considerations of thermal effects when applying irreversible electroporation tissue ablation therapy. Prostate. 2015;75(10):1114–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Golberg A, Yarmush ML. Nonthermal irreversible electroporation: fundamentals, applications, and challenges. IEEE Trans Biomed Eng. 2013;60(3):707–14.

    Article  PubMed  Google Scholar 

  18. Bertacchini C, Margotti PM, Bergamini E, Lodi A, Ronchetti M, Cadossi R. Design of an irreversible electroporation system for clinical use. Technol Cancer Res Treat. 2007;6(4):313–20.

    Article  PubMed  Google Scholar 

  19. Buijs M, van Lienden KP, Wagstaff PGK, Scheltema MJV, de bruin DM, Zondervan PJ, van Delden OM, van leeuwen TG, de la Rosette JJMCH, Laguna MP. Irreversible electroporation for the ablation of renal cell carcinoma: a prospective, human, in vivo study protocol (IDEAL phase 2b). JMIR Res Protoc. 2017;6(2):e21. 1–12

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nielsen K, Scheffer HJ, Vieveen JM, van Tilborg AA, Meijer S, van KC, et al. Anaesthetic management during open and percutaneous irreversible electroporation. Br J Anaesth. 2014;113(6):985–92.

    Article  CAS  PubMed  Google Scholar 

  21. Edd JF, Horowitz L, Davalos RV, Mir LM, Rubinsky B. In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biomed Eng. 2006;53:1409–15.

    Article  PubMed  Google Scholar 

  22. Tracy CR, Kabbani W, Cadeddu JA. Irreversible electroporation (IRE): a novel method for renal tissue ablation. BJU Int. 2011;107(12):1982–7.

    Article  PubMed  Google Scholar 

  23. Deodhar A, Monette S, Single GW Jr, Hamilton WC Jr, Thornton R, Maybody M, et al. Renal tissue ablation with irreversible electroporation: preliminary results in a porcine model. Urology. 2011;77(3):754–60.

    Article  PubMed  Google Scholar 

  24. Wendler JJ, Porsch M, Huhne S, Baumunk D, Buhtz P, Fischbach F, et al. Short- and mid-term effects of irreversible electroporation on normal renal tissue: an animal model. Cardiovasc Intervent Radiol. 2013;36(2):512–20.

    Article  CAS  PubMed  Google Scholar 

  25. Cornelis FH, Durak JC, Kimm SY, Wimmer T, coleman JA, Solomon SB, Srimathveeravalli G. A comparative study of ablation boundary sharpness after percutaneous radiofrequency, cryo-, microwave and irreversible electroporation ablation in normal swine liver and kidneys. Cardiovasc Intervent Radiol. 2017;40:1600. https://doi.org/10.1007/s00270-017-1692-3.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Morgan MS, Ozayar A, lucas E, Friedlander JI, Shakir NA, Cadeddu JA. Comparative effects of irreversible electroporation, radiofrequency ablation and partial nephrectomy on renal function preservation in a porcine solitary kidney model. Urology. 2016;94:281–7.

    Article  PubMed  Google Scholar 

  27. Sommer CM, Fritz S, Wachter MF, Vollherbst D, Stampfl U, Bellemann N, et al. Irreversible electroporation of the pig kidney with involvement of the renal pelvis: technical aspects, clinical outcome, and three-dimensional CT rendering for assessment of the treatment zone. J Vasc Interv Radiol. 2013;24(12):1888–97.

    Article  PubMed  Google Scholar 

  28. Wagstaff PG, de Bruin DM, van den Bos W, Ingels A, van Gemert MJ, Zondervan PJ, et al. Irreversible electroporation of the porcine kidney: temperature development and distribution. Urol Oncol. 2015;33:168.e1–7.

    Article  Google Scholar 

  29. Thomson KR, Cheung W, Ellis SJ, Federman D, Kavnoudias H, Loader-Oliver D, et al. Investigation of the safety of irreversible electroporation in humans. J Vasc Interv Radiol. 2011;22(5):611–21.

    Article  PubMed  Google Scholar 

  30. Trimmer CK, Khosla A, Morgan M, Stephenson SL, Ozayar A, Cadeddu JA. Minimally invasive percutaneous treatment of small renal tumors with irreversible electroporation: a single-center experience. J Vasc Interv Radiol. 2015;26:1465–71.

    Article  PubMed  Google Scholar 

  31. Canvasser NE, Sorokin I, Lay AH, Morgan MSC, Ozayar A, Trimmer C, Cadeddu JA. Irreversible electroporation of small renal masses: suboptimal oncologic efficacy in an early series. World J Urol. 2017;35:1549. https://doi.org/10.1007/s00345-017-2025-5.

    Article  PubMed  Google Scholar 

  32. Diehl SJ, Rathmann N, Kostrzewa M, Ritter M, Smakic A, Schoenberg SO, Kriegmair MC. Irreversible electroporation for surgical renal masses in solitary kidneys: short-term interventional and functional outcomes. J Vasc Interv Radiol. 2016;27:1407–13.

    Article  PubMed  Google Scholar 

  33. Wendler JJ, Porsch M, Nitschke S, Kollermann J, Siedentopf S, Pech M, et al. A prospective Phase 2a pilot study investigating focal percutaneous irreversible electroporation (IRE) ablation by NanoKnife in patients with localised renal cell carcinoma (RCC) with delayed interval tumour resection (IRENE trial). Contemp Clin Trials. 2015;43:10–9.

    Article  CAS  PubMed  Google Scholar 

  34. Wendler JJ, Ricke J, Pech M, Fischbach F, Jurgens J, Siedentopf S, Roessner A, Porsch M, Baukumk D, Schostak m KJ, Liehr UB. First delayed resection findings after Irreversible Electroporation (IRE) of human localised renal cell carcinoma (RCC)in the IRENE pilot phase 2a trial. Cardiovasc Intervent Radiol. 2016;39:239–50.

    Article  PubMed  Google Scholar 

  35. Hinshaw JL, Lubner MG, Ziemlewicz TJ, Lee FT, Brace CL. Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation- what should you use and why? Radiographics. 2014;34:1344–62.

    Article  PubMed  Google Scholar 

  36. Brace CL. Radiofrequency and microwave ablation of the liver, lung, kidney and bone: what are the differences ? Curr Probl Diagn Radiol. 2009;38:135–43.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Andreano A, Cl B. A comparison of direct heating during radiofrequency and microwave ablation in ex vivo liver. Cardiovasc Interv Radiol. 2013;36:505–11.

    Article  Google Scholar 

  38. Duffey BG, Anderson JK. Current and future technology for minimally invasive ablation of renal cell carcinoma. Indian J Urol. 2010;26:410–7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brace CL. Microwave tissue ablation: biophysics, technology and applications. Crit Rev Biomed Eng. 2010;38:65–78.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lubner MG, Brace CL, Hinshaw JL, Lee FT Jr. Microwave tumor ablation: mechanism of action, clinical results and devices. J Vasc Interv Radiol. 2010;21(suppl 8):S192–203.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Knavel EM, Hinshaw JL, Lubner MG, et al. High-powered gas-cooled microwave ablations; shaft cooling creates an effective stick function without altering the ablation zone. AJR Am J Roentgenol. 2012;198:W260–5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li X, Zhang L, Fan W, et al. Comparison of microwave ablation and multipolar radiofrequency ablation, both using a pair of internally cooled interstitial applicators: results in ex vivo porcine livers. Int J Hyperth. 2011;27:240–8.

    Article  Google Scholar 

  43. Laeseke PF, Lee FT Jr, Sampson LA, Van der Weide DW, Brace CL. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes. J Vac Interv Radio. 2009;20:1224–9.

    Article  Google Scholar 

  44. Castle SM, Salas N, Leveillee RJ. Initial experience using microwave ablation therapy for renal tumor treatment: 18-months follow-up. Urology. 2011;77:792–7.

    Article  PubMed  Google Scholar 

  45. Oshima F, YamakadoK NA, Takaki H, Makita M, Takeda K. Simultaneous microwave ablation using multiple antennas in explanted bovine livers: relationship between ablative zone and antenna. Radiat Med. 2008;26:408–14.

    Article  PubMed  Google Scholar 

  46. Durick NA, Laeseke PF, Broderick LS, et al. Microwave ablation with triaxial antennas tuned for lug: results in an in vivo porcine model. Radiology. 2008;247:80–7.

    Article  PubMed  Google Scholar 

  47. Sun Y, Wang Y, Ni X, et al. Comparison of ablation zone between 915- and 2.450-mhz cooled – shaft microwave antenna: results in in vivo porcine livers. AJR Am J Roentgenol. 2009;192:511–4.

    Article  PubMed  Google Scholar 

  48. Stickland AD, Clegg PJ, Cronin NJ, et al. Experimental study of large-volume microwave ablation in the liver. Br J Surg. 2002;89:1003–7.

    Article  Google Scholar 

  49. Bertram JM, Yang D, Converse MC, Webster JG, Mahvi DM. A review of coaxial-based interstitial antennas for hepatic microablation. Crit Rev Biomed Eng. 2006;34:187–213.

    Article  PubMed  Google Scholar 

  50. Moore C, Salas N, Zaias J, Shields J, Bird V, Leveillee R. Effects of microwave ablation of the kidney. J Endourol. 2010;24:439–44.

    Article  PubMed  Google Scholar 

  51. Niemeyer DJ, Simo KA, MT MM, et al. Optimal ablation volumes are achieved at submaximal power settings in a 2.45-GHz microwave ablation system. Surg Innov. 2015;22:41–5.

    Article  PubMed  Google Scholar 

  52. He X, McGee S, Coad JE. Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model. Int J Hyperth. 2004;20:567–93.

    Article  CAS  Google Scholar 

  53. Brace CL, Duaz TA, Hinshaw JL, Lee FT Jr. Tissue contraction caused by radiofrequency and microwave ablation: a laboratory study in liver rand lung. J Vasc Interv Radiol. 2010;21:1280–6.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sommer CM, Sommer SA, Mokry T, et al. Quantification of tissue shrink and dehydration caused by microwave ablation: experimental study in kidneys for the estimation of effective coagulation volume. J Vasc Interv Radiol. 2013;24:1241–8.

    Article  PubMed  Google Scholar 

  55. Sommer CM, Arnegger F, Koch V, et al. Microwave ablation of porcine kidneys in vivo: effect of two different ablation modes (“temperature control” and “power control”) on procedural outcome. Cardiovasc Intervent Radiol. 2012;35:653–60.

    Article  CAS  PubMed  Google Scholar 

  56. Bartoletti R, Cai T, Tosoratti N, et al. In vivo microwave-induced porcine kidney thermoablation: results and perspectives from a pilot study of a new probe. BJU Int. 2010;106:1817–21.

    Article  PubMed  Google Scholar 

  57. Isfort P, Penzkofer T, Tanaka T, et al. Efficacy on antegrade pyeloperfusion to protect renal pelvis in kidney microwave ablation using and in vivo swine model. Investig Radiol. 2013;48:863–8.

    Article  Google Scholar 

  58. Hope WW, Schmelzer TM, Newcomb WL, et al. Guidelines for power and time variables for microwave ablation in an in vivo porcine kidney. J Surg Res. 2009;153:263–7.

    Article  PubMed  Google Scholar 

  59. Clark P, Woodruff R, Zagoria R. Microwave ablation of renal parenchymal tumors before nephrectomy: phase I study. AJR. 2007;188:121–14.

    Article  Google Scholar 

  60. Muto G, Castelli E, Migliari R, et al. Laparoscopic microwave ablation and enucleation of small renal masses: preliminary experience. Eur Urol. 2011;60:173–6.

    Article  PubMed  Google Scholar 

  61. Bartoletti R, Meliani E, Simonato A, et al. Microwave induced thermoablation with Amica-probe is a safe and reproducible method to treat solid renal masses: results from a phase I study. Oncol Rep. 2012;28:1243–8.

    Article  PubMed  Google Scholar 

  62. Martin J, Athreya S. Meta-analysis of cryoablation versus microwave ablation for small renal masses: is there a difference in outcome? Diagn Interv Radiol. 2013;19:501–7.

    PubMed  Google Scholar 

  63. Yu J, Liang P, Xu XL, et al. US-guided percutaneous microwave ablation of renal cell carcinoma: intermediate-term results. Radiology. 2012;263:900–8.

    Article  PubMed  Google Scholar 

  64. Guan W, Vai J, Liu J, et al. Microwave ablation versus partial nephrectomy for small renal tumors: intermediate-term results. J Surg Oncol. 2012;106:316–21.

    Article  PubMed  Google Scholar 

  65. Bai J, Hu Z, Guan W, et al. Initial experience with retroperitoneoscopic microwave ablation of clinical T(1a) renal tumors. J Endourol. 2010;24:2017–22.

    Article  PubMed  Google Scholar 

  66. Carafiello G, Mangini M, Fontana F, et al. Single-antenna microwave ablation under contrast-enhanced ultrasound guidance for treatment of small renal cell carcinoma: preliminary experience. Cardiovasc Intervent Radiol. 2009;33:367–74.

    Article  Google Scholar 

  67. Moreland AJ, Ziemlewicz TJ, Best SL, et al. High powered microwave ablation of T1a renal cell carcinoma: safety and initial clinical evaluation. J Endourol. 2014;28:1046–52.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Horn JC, Patel RS, Kim E, Nowakowski FS, Lookstein RA, Fischman AM. Percutaneous microwave ablation of renal tumors using a gas-cooled 2.4-GHz probe: technique and initial results. J Vasc Interv Radiol. 2014;25:448–53.

    Article  PubMed  Google Scholar 

  69. Carrafiello G, Dionigi G, Ierardi AM, et al. Efficacy, safety and effectiveness of image-guided percutaneous microwave ablation in cystic renal lesions Bosniak III or IV after 24 months follow up. Int J Surg. 2013;11(S1):S30–5.

    Article  PubMed  Google Scholar 

  70. Lin Y, Liang P, Yu XL, et al. Percutaneous microwave ablation of renal cell carcinoma is safe in patients with a solitary kidney. Urology. 2014;83:357–63.

    Article  PubMed  Google Scholar 

  71. Gao Y, Liang P, Yu X, Yu J, Cheng Z, Han Z, Duan S, Huang H. Microwave treatment of renal cell carcinoma adjacent to renal sinus. Eur J Radiol. 2016;85:2083–9.

    Article  PubMed  Google Scholar 

  72. Klapperich ME, Abel EJ, Ziemlewicz TJ, Best S, Lubner MG, Nakada SY, Hinshaw JL, Brace CL, Lee FT, Wells SA. Effect of tumor complexity and technique on efficacy and complications after percutaneous microwave ablation of stage T1a renal cell carcinoma: a single-center, retrospective study. Radiology. 2017;284:272–80.

    Article  PubMed  Google Scholar 

  73. Ierardi AM, Puliti A, Angileri SA, Petrillo M, Duka E, Floridi C, Lecchi M, Carrafiello G. Microwave ablation of malignant renal tumors: intermediate-term results and usefulness of RENAL and mRENAL scores for predicting outcomes and complications. Med Oncol. 2017;34:97.

    Article  PubMed  Google Scholar 

  74. Cranston D. A review of high intensity focused ultrasound in relation to the treatment of renal tumors and other malignancies. Ultrason Sonochem. 2015;27:654–8.

    Article  CAS  PubMed  Google Scholar 

  75. ter Haar GR, Clarke RL, Vaughan MG, Hill CR. Trackless surgery using focused ultrasound: technique and case report. Min Invest Ther. 1991;1:13–5.

    Google Scholar 

  76. Cranston Hilll CR, ter haar GR. High-intensity ultrasound potential for cancer treatment. Br J Radiol. 1995;68:1296–303.

    Article  Google Scholar 

  77. Hynynen K. The threshold for thermally significant cavitation in dog's thigh muscle in vivo. Ultrasound Med Biol. 1991;17:157–69.

    Article  CAS  PubMed  Google Scholar 

  78. Klatte T, Marberger M. High-intensity focused ultrasound for the treatment of renal masses: current status and future potential. Curr Opin Urol. 2009;19:188–91.

    Article  PubMed  Google Scholar 

  79. Daum DR, Smith NB, King R, Hynynen K. In vivo demonstration of non-invasive thermal surgery of the liver and kidney using and ultrasonic phased array. Ultrasound Med Biol. 1999;25:1087–98.

    Article  CAS  PubMed  Google Scholar 

  80. Sea JC, Bahler CD, Ring JD, Amstutz S, Sanghvi NT, Cheng L, Sundaram CP. Calibration of a novel, laparoscopic, 12-mm, ultrasound, image-guided, high-intensity focused ultrasound probe for ablation of renal neoplasms. Urology. 2015;85:953–8.

    Article  PubMed  Google Scholar 

  81. van Breugel JMM, de Greef M, Wijlemans JW, Schubert G, van den Bosch MAAJ, Moonen CTW, Ries MG. Thermal ablation of a confluent lesion in the porcine kidney with a clinically available MR-HIFU system. Phys Med Biol. 2017;62:5312–26.

    Article  PubMed  Google Scholar 

  82. Illing RO, Kennedy JE, Wu F, et al. The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population. Br J Cancer. 2005;93:890–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ritchie RW, Leslie TA, Phillips R, et al. Extracorporeal high intensity focused ultrasound for renal tumors: a 3-year follow up. BJUI. 2010;106:1004–9.

    Article  Google Scholar 

  84. Ritchie R, Collin R, Coussious JC, Leslie T. Attenuation and de-focusing during high intensity focused ultrasound therapy through perinephric fat. Ultrasound Med Biol. 2013;39:1785–93.

    Article  PubMed  Google Scholar 

  85. Häcker A, Michel MS, Marlinghaus E, et al. Extracorporeally induced ablation of renal tissue by high-intensity focused ultrasound. BJU Int. 2006;97:779–85.

    Article  PubMed  Google Scholar 

  86. Marberger M, Schatzl G, Cranston D, et al. Extracorporeal ablation of renal tumours with high-intensity focused ultrasound. BJU Int. 2005;95(Suppl 2):52–5.

    Article  PubMed  Google Scholar 

  87. Ritchie RW, Leslie T, Phillips R, et al. Extracorporeal high intensity focused ultrasound for renal tumours: a 3-year follow-up. BJU Int. 2010;106:1004–9.

    Article  PubMed  Google Scholar 

  88. Klingler HC, Susani M, Seip R, et al. A novel approach to energy ablative therapy of small renal tumours: laparoscopic high-intensity focused ultrasound. Eur Urol. 2008;53:810–8.

    Article  PubMed  Google Scholar 

  89. Ritchie RW, Leslie TA, Turner GD, et al. Laparoscopic high-intensity focused ultrasound for renal tumours: a proof of concept study. BJU Int. 2011;107:1290–6.

    Article  PubMed  Google Scholar 

  90. De Meerler G, Khoo V, Escudier B, et al. Radiotherapy for renal cell carcinoma. Lancet. 2014;15:e170–7.

    Article  Google Scholar 

  91. Ponsky L, Lo SS, Zhang Y, et al. Phase I dose-escalation study of stereotactic body radiotherapy (SBRT) for poor surgical candidates with localized renal cell carcinoma. Radiother Oncol. 2015;117:183–7.

    Article  PubMed  Google Scholar 

  92. Brown JM, Carlson DJ, Brenner DJ. The tumor radiobiology of SRS and SBRT: are more than the 5 Rs involved? Int J Radiat Oncol Biol Phys. 2014;88:254–62.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Siva S, Pham D, Gill S, et al. A systematic review of stereotactic radiotherapy ablation for primary renal cell carcinoma. BJU Int. 2012;110:E737–43.

    Article  PubMed  Google Scholar 

  94. Ponsky LE, Crownover RL, Rosen MJ, et al. Initial evaluation of Cyberknife technology for extracorporeal renal tissue ablation. Urology. 2003;61:498–501.

    Article  PubMed  Google Scholar 

  95. Nair VJ, Szanto J, Vandervoort E, et al. CyberKnife for inoperable renal tumors: Canadian pioneering experience. Can J Urol. 2013;20:6944–9.

    PubMed  Google Scholar 

  96. Lo CH, Huang WY, Chao HL, et al. Novel application of stereotactic ablative radiotherapy using CyberKnife for early-stage renal cell carcinoma in patients with pre-existing chronic kidney disease: initial clinical experiences. Oncol Lett. 2014;8:355–60.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Staehler M, Bader M, Schlenker B, et al. Single fraction radiosurgery for the treatment of renal tumors. J Urol. 2015;193:771–5.

    Article  PubMed  Google Scholar 

  98. Kroeze SG, Grimbergen MC, Rehmann H, et al. Photodynamic therapy as novel nephron sparing treatment option for small renal masses. J Urol. 2012;187:289–95.

    Article  PubMed  Google Scholar 

  99. Kimm SY, Tarin TV, Monette S, Srimathveeravalli G, Gerber D, Durack JC, Solomon SB, Scardino PT, Scherz A, Coleman J. Nonthermal ablation by using intravascular oxygen radical generation with WST11: dynamic tissue effects and implications for focal therapy. Radiology. 2016;281:109–18.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

del Pilar Laguna Pes, M., Rosette, J.J.M.C.H.d. (2019). Novel Ablative Therapies for Renal Tumors. In: Gorin, M., Allaf, M. (eds) Diagnosis and Surgical Management of Renal Tumors. Springer, Cham. https://doi.org/10.1007/978-3-319-92309-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92309-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92308-6

  • Online ISBN: 978-3-319-92309-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics