Skip to main content

Acoustic Sensors in Biomedical Applications

  • Chapter
  • First Online:
Acoustic Sensors for Biomedical Applications

Part of the book series: SpringerBriefs in Speech Technology ((BRIEFSSPEECHTECH))

Abstract

The biomedical engineering domain is concerned with physiological modeling, biomaterials, biomechanics, control and simulation, etc. Biomedical sensors are considered the most vital parts in the biomedical engineering. These sensors enable the biologic events detection and conversion to signals. The biomedical sensors receipt signals that represent the biomedical measurements and convert them into optical or electrical signals. Thus, the biomedical sensor acts as an interface between the biological feature and the electronic system. Sensor specialists and biomedical engineers are interested to process and design sensors for several application problems. This chapter introduces some examples of the acoustic sensors in different biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kovacs, G., & Venema, A. (1992). Theoretical comparison of sensitivities of acoustic shear wave modes for (bio) chemical sensing in liquids. Applied Physics Letters, 61(6), 639–641.

    Article  Google Scholar 

  2. Gizeli, E., Liley, M., Lowe, C. R., & Vogel, H. (1997). Antibody binding to a functionalized supported lipid layer: A direct acoustic immunosensor. Analytical Chemistry, 69(23), 4808–4813.

    Article  Google Scholar 

  3. Korenbaum, V. I., Tagil’tsev, A. A., D’yachenko, A. I., & Kostiv, A. E. (2013). Comparison of the characteristics of different types of acoustic sensors when recording respiratory noises on the surface of the human chest. Acoustical Physics, 59(4), 474–481.

    Article  Google Scholar 

  4. Korenbaum, V. I., Tagil’tsev, A. A., Kostiv, A. E., Gorovoy, S. V., & Pochekutova, I. A. (2008). Acoustic equipment for studying human respiratory sounds. Instruments and Experimental Techniques, 51(2), 296–303.

    Article  Google Scholar 

  5. Korenbaum, V. I., Nuzhdenko, A. V., Tagiltsev, A. A., & Kostiv, A. E. (2010). Investigation into transmission of complex sound signals in the human respiratory system. Acoustical Physics, 56(4), 568–575.

    Article  Google Scholar 

  6. Korenbaum, V. I., D’yachenko, A. I., Nuzhdenko, A. V., Lopatkin, N. S., Tagil’tsev, A. A., & Kostiv, A. E. (2011). Transmission of complex sound signals in the human respiratory system as a function of sound velocity in the utilized gas mixture. Acoustical Physics, 57(6), 872–879.

    Article  Google Scholar 

  7. Emmanuel, B. S. (2012). A review of signal processing techniques for heart sound analysis in clinical diagnosis. Journal of Medical Engineering & Technology, 36(6), 303–307.

    Article  Google Scholar 

  8. Martinez-Alajarin, J., & Ruiz-Merino, R. (2005, June). Efficient method for events detection in phonocardiographic signals. In Bioengineered and bioinspired systems II (Vol. 5839, pp. 398–410). International Society for Optics and Photonics.

    Google Scholar 

  9. Singh, J., & Anand, R. S. (2007). Computer aided analysis of phonocardiogram. Journal of Medical Engineering & Technology, 31(5), 319–323.

    Article  Google Scholar 

  10. Clifford, G. D. (2002). Signal processing methods for heart rate variability (Doctoral dissertation, University of Oxford).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dey, N., Ashour, A.S., Mohamed, W.S., Nguyen, N.G. (2019). Acoustic Sensors in Biomedical Applications. In: Acoustic Sensors for Biomedical Applications. SpringerBriefs in Speech Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-92225-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92225-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92224-9

  • Online ISBN: 978-3-319-92225-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics