Skip to main content

Biodiversity

  • Chapter
  • First Online:
Ecological and Evolutionary Modelling

Part of the book series: SpringerBriefs in Ecology ((BRIEFSECOLOGY))

  • 1109 Accesses

Abstract

Biodiversity is the most striking phenomenon in nature but perhaps also the most difficult to monitor and hypothesise. This chapter introduces key concepts and metrics for describing biodiversity patterns, as well as changes in these patterns. It starts with introducing the concepts of occupancy and aggregation across spatial scales for single species, followed by measures of species association and co-occurrence. It then discusses biodiversity patterns based on the manipulation of species-by-site matrices, from occupancy frequencies to species turnover and partitioning. It ends with the effects of imperfect detection and sampling on observed biodiversity patterns. This chapter lays the platform for understanding concepts and models of other chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anselin L (1995) Local indicators of spatial association - LISA. Geogr Anal 27:93–115

    Article  Google Scholar 

  • Arita HT, Christen JA, Rodriguez P, Soberon J (2008) Species diversity and distribution in presence-absence matrices: mathematical relationships and biological implications. Am Nat 172:519–532

    Article  PubMed  Google Scholar 

  • Brown AM, Warton DI, Andrew NR, Binns M, Cassis G, Gibb H (2014) The fourth-corner solution–using predictive models to understand how species traits interact with the environment. Methods Ecol Evol 5:344–352

    Article  Google Scholar 

  • Burgman MA, Fox JC (2003) Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Anim Conserv 6:19–28

    Article  Google Scholar 

  • Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  • Cliff AD, Ord JK (1981) Spatial processes: models and applications. Pion, London

    Google Scholar 

  • Crist TO, Veech JA (2006) Additive partitioning of rarefaction curves and species–area relationships: unifying α-, β- and γ-diversity with sample size and habitat area. Ecol Lett 9:923–932

    Article  PubMed  Google Scholar 

  • Diserud OH, Ødegaard F (2007) A multiple-site similarity measure. Biol Lett 3:20–22

    Article  PubMed  Google Scholar 

  • Ellis EC, Ramankutty N (2008) Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ 6:439–447

    Article  Google Scholar 

  • Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:57–68

    Article  Google Scholar 

  • Ferrier S, Manion G, Elith J, Richardson K (2007) Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers Distrib 13:252–264

    Article  Google Scholar 

  • Gotelli NJ, Graves GR (1996) Null models in ecology. Smithsonian Institute Press, London

    Google Scholar 

  • Gotelli NJ, McCabe DJ (2002) Species co-occurrence: a meta-analysis of J. M. Diamond’s assembly rules model. Ecology 83:2091–2096

    Article  Google Scholar 

  • Hanski I (1982) Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38:210–221

    Article  Google Scholar 

  • Harte J (2011) Maximum entropy and ecology: a theory of abundance, distribution and energetics. Oxford University Press, Oxford

    Book  Google Scholar 

  • Harte J, Kinzig A, Green J (1999) Self-similarity in the distribution and abundance of species. Science 284:334–336

    Article  CAS  PubMed  Google Scholar 

  • He F, Gaston KJ (2000) Estimating species abundance from occurrence. Am Nat 156:553–559

    Article  PubMed  Google Scholar 

  • He F, Gaston KJ (2003) Occupancy, spatial variance, and the abundance of species. Am Nat 162:366–375

    Article  PubMed  Google Scholar 

  • Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Hui C (2009a) A Bayesian solution to the modifiable areal unit problem. In: Hassanien AE, Abraham A, Herrera F (eds) Foundations of computational intelligence, vol 2.: Approximate Reasoning. Springer, Berlin, pp 175–196

    Google Scholar 

  • Hui C (2009b) On the scaling pattern of species spatial distribution and association. J Theor Biol 261:481–487

    Article  PubMed  Google Scholar 

  • Hui C (2011) Forecasting population trend from the scaling pattern of occupancy. Ecol Model 222:442–446

    Article  Google Scholar 

  • Hui C (2012) Scale effect and bimodality in the frequency distribution of species occupancy. Community Ecol 13:30–35

    Article  Google Scholar 

  • Hui C, Li ZZ (2004) Distribution patterns of metapopulation determined by Allee effects. Popul Ecol 46:55–63

    Article  Google Scholar 

  • Hui C, McGeoch MA (2007a) A self-similarity model for the occupancy frequency distribution. Theor Popul Biol 71:61–70

    Article  PubMed  Google Scholar 

  • Hui C, McGeoch MA (2007b) Modelling species distributions by breaking the assumption of self-similarity. Oikos 116:2097–2107

    Article  Google Scholar 

  • Hui C, McGeoch MA (2008) Does the self-similar species distribution model lead to unrealistic predictions? Ecology 89:2946–2952

    Article  PubMed  Google Scholar 

  • Hui C, McGeoch MA (2014) Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns. Am Nat 184:684–694

    Article  PubMed  Google Scholar 

  • Hui C, McGeoch MA, Warren M (2006) A spatially explicit approach to estimating species occupancy and spatial correlation. J Anim Ecol 75:140–147

    Article  PubMed  Google Scholar 

  • Hui C, McGeoch MA, Reyers B, le Roux PC, Greve M, Chown SL (2009) Extrapolating population size from the occupancy-abundance relationship and the scaling pattern of occupancy. Ecol Appl 19:2038–2048

    Article  PubMed  Google Scholar 

  • Hui C, Veldtman R, McGeoch MA (2010) Measures, perceptions and scaling patterns of aggregated species distributions. Ecography 33:95–102

    Article  Google Scholar 

  • Hui C, Foxcroft LC, Richardson DM, MacFadyen S (2011a) Defining optimal sampling effort for large-scale monitoring of invasive alien plants: a Bayesian method for estimating abundance and distribution. J Appl Ecol 48:768–776

    Article  Google Scholar 

  • Hui C, Richardson DM, Robertson MP, Wilson JRU, Yates CJ (2011b) Macroecology meets invasion ecology: linking the native distributions of Australian acacias to invasiveness. Divers Distrib 17:872–883

    Article  Google Scholar 

  • Hui C, Boonzaaier C, Boyero L (2012) Estimating changes in species abundance from occupancy and aggregation. Basic Appl Ecol 13:169–177

    Article  Google Scholar 

  • Hui C, Richardson DM, Pyšek P, Le Roux JJ, Kučera T, Jarošík V (2013) Increasing functional modularity with residence time in the co-distribution of native and introduced vascular plants. Nat Commun 4:2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaccard P (1900) Contribution au proble`me de l’immigration postglaciaire de la flore alpine. Bull Soc Vaud Sci Nat 36:87–130

    Google Scholar 

  • Jaynes ET (1968) Prior probabilities. IEEE Trans Syst Sci Cybern 4:227–241

    Article  Google Scholar 

  • Jost L, Chao A, Chazdon RL (2011) Compositional similarity and b (beta) diversity. In: Magurran AE, McGill BJ (eds) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford, UK, pp 66–84

    Google Scholar 

  • Koch LF (1957) Index of biotal dispersity. Ecology 38:145–148

    Article  Google Scholar 

  • Kunin WE (1998) Extrapolating species abundance across spatial scales. Science 281:1513–1515

    Article  CAS  PubMed  Google Scholar 

  • Kunin WE, Harte J, He F, Hui C, Jobe RT, Ostling A, Polce C, Šizling A, Smith AB, Smith K, Smart SM, Storch D, Tjørve E, Ugland KI, Ulrich W, Varma V (2018) Upscaling biodiversity: estimating the species-area relationship from small samples. Ecol Monogr 88:170–187

    Article  Google Scholar 

  • Lande R (1996) Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:5–13

    Article  Google Scholar 

  • Latombe G, McGeoch MA, Nipperess DA, Hui C (2018) zetadiv: Functions to compute compositional turnover using zeta diversity. R package, version 1.1.1, cran.r-project.org

    Google Scholar 

  • Latombe G, Hui C, McGeoch MA (2017) Multi-site generalised dissimilarity modelling: using zeta diversity to differentiate drivers of turnover in rare and widespread species. Methods Ecol Evol 8:431–442

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Lloyd M (1967) Mean crowding. J Anim Ecol 36:1–30

    Article  Google Scholar 

  • MacArthur RH (1957) On the relative abundance of bird species. Proc Natl Acad Sci U S A 43:293–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB (2003) Estimating site occupancy, colonization and local extinction probabilities when a species is detected imperfectly. Ecology 84:2200–2207

    Article  Google Scholar 

  • McGeoch MA, Gaston KJ (2002) Occupancy frequency distributions: patterns, artefacts and mechanisms. Biol Rev 77:311–331

    Article  PubMed  Google Scholar 

  • McGlinn DJ, Hurlbert AH (2012) Scale dependence in species turnover reflects variance in species occupancy. Ecology 93:294–302

    Article  PubMed  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington DC

    Google Scholar 

  • Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on Earth and in the Ocean? PLoS Biol 9:e1001127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    Article  CAS  PubMed  Google Scholar 

  • Morisita M (1962) Id-index, a measure of dispersion of individuals. Res Popul Ecol 4:1–7

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca Gustavo AB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  Google Scholar 

  • Olson DM, Dinerstein E (1998) The Global 200: a representation approach to conserving the Earth’s most biologically valuable ecoregions. Conserv Biol 12:502–515

    Article  Google Scholar 

  • Openshaw S (1984) The modifiable areal unit problem. GeoBooks, Norwich

    Google Scholar 

  • Papp L, Izsák J (1997) Bimodality in occurrence classes: a direct consequence of lognormal or logarithmic series distribution of abundances – a numerical experimentation. Oikos 79:191–194

    Article  Google Scholar 

  • Park SY, Bera AK (2009) Maximum entropy autoregressive conditional heteroskedasticity model. J Econ 150:219–230

    Article  Google Scholar 

  • Peleg S, Werman M, Rom H (1989) A unified approach to the change of resolution: space and gray-level. IEEE Trans Pattern Anal Mach Intel 11:739–742

    Article  Google Scholar 

  • Perry JN (1995) Spatial analysis by distance indexes. J Anim Ecol 64:303–314

    Article  Google Scholar 

  • Qian H, Ricklefs RE (2012) Disentangling the effects of geographic distance and environmental dissimilarity on global patterns of species turnover. Glob Ecol Biogeogr 21:341–351

    Article  Google Scholar 

  • Rapoport EH (1982) Aerography. Permagon Press, Oxford, UK

    Google Scholar 

  • Raunkiaer C (1934) The life forms of plants and statistical plant geography being the collected papers of C. Raunkiaer. Clarendon Press, Oxford

    Google Scholar 

  • Ripley BD (1976) The second-order analysis of stationary point processes. J Appl Probab 13:255–266

    Article  Google Scholar 

  • Royle JA, Dorazio RM (2008) Hierarchical modelling and inference in ecology: the analysis of data from populations, metapopulations and communities. Academic Press, New York

    Google Scholar 

  • Royle JA, Nichols JD (2003) Estimating abundance from repeated presence absence data or point counts. Ecology 84:777–790

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Labs Tech J 27:379–423

    Article  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Sørensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter 5:1–34

    Google Scholar 

  • Stone L, Roberts A (1990) The checker board score and species distributions. Oecologia 85:74–79

    Article  PubMed  Google Scholar 

  • Taylor LR (1961) Aggregation, variance and the mean. Nature 189:732–735

    Article  Google Scholar 

  • Tilman D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc Natl Acad Sci U S A 101:10854–10861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokeshi M (1990) Niche apportionment or random assortment: species abundance patterns revisited. J Anim Ecol 59:1129–1146

    Article  Google Scholar 

  • Ugland KI, Gray JS, Ellingsen KE (2003) The species–accumulation curve and estimation of species richness. J Anim Ecol 72:888–897

    Article  Google Scholar 

  • Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116

    Article  CAS  PubMed  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  • Wilson RJ, Thomas CD, Fox R, Roy DB, Kunin WE (2004) Spatial patterns in species distributions reveal biodiversity change. Nature 432:393–396

    Article  CAS  PubMed  Google Scholar 

  • World Conservation Union (2014) IUCN Red List of Threatened Species, 2014.3. Summary Statistics for Globally Threatened Species. Table 1: Numbers of threatened species by major groups of organisms (1996–2014). International Union for Conservation of Nature, Switzerland

    Google Scholar 

  • Wright DH (1991) Correlations between incidence and abundance are expected by chance. J Biogeogr 1:463–466

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hui, C., Landi, P., Minoarivelo, H.O., Ramanantoanina, A. (2018). Biodiversity. In: Ecological and Evolutionary Modelling. SpringerBriefs in Ecology. Springer, Cham. https://doi.org/10.1007/978-3-319-92150-1_1

Download citation

Publish with us

Policies and ethics