Skip to main content

Genetic Improvement of Papaya (Carica papaya L.)

  • Chapter
  • First Online:

Abstract

Arising from a relatively isolated center of origin , papaya has spread throughout all tropical and subtropical countries through human intervention. This global dispersal has coincided with continuous improvement of the cultivated plants through breeding programs often designed to improve the agronomic characters and to address biotic and abiotic stresses that affect papaya production . Papaya production is threatened by a myriad of problems including devastating pests and diseases as well as the inability for both farmers and researchers alike to differentiate among the three sex types, male, female and hermaphrodite at the seedling stage, among others. Many attempts have been made by researchers over the years to resolve the problems through conventional and biotechnological techniques. Conventional plant breeding has given rise to varieties that are resistant to diseases as well as high yielders of quality fruits. However, conventional techniques require 12–14 years to develop new papaya varieties. Besides, devastating viral diseases like papaya ringspot virus (PRSV ) have proved almost impossible to control through conventional means. The innovative technologies and growing understanding to manipulate the papaya phenotype at the molecular level provide new opportunities for the improvement of papaya . Through gene transfer technology, it is possible to develop transgenic papaya with pest and disease resistance as well as improved nutritional quality . This chapter provides insight into conventional breeding of papaya , the role of tissue and protoplast culture as well as molecular techniques in papaya improvement such as genetic transformation , mutation breeding and marker assisted selection and breeding. In addition, the potential of parthenocarpy as well as polyploidy and somaclonal variation in papaya breeding are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abreu IS, Carvalho CR, Clarindo WR (2014) Massal induction of Carica papaya L. ʻGolden’ somatic embryos and somaclone screening by flow cytometry and cytogenetic analysis. Cytol 79(4):475–484

    Google Scholar 

  • Abreu IS, Carvalho CR, Soares FAF (2015) Early sex discrimination in Carica papaya by nuclei FISH. Euphy 206:667–676. https://doi.org/10.1007/s10681-015-1485-1

    Article  CAS  Google Scholar 

  • Anandan R, Thirugnanakumar S, Sudhakar D et al (2011) In vitro organogenesis and plantlet regeneration of Carica papaya L. J Agri Tech 7(5):2139–2148

    Google Scholar 

  • Aravind G, Bhowmik D, Duraivel S et al (2013) Traditional and medicinal uses of Carica papaya. J Med Plants Stud 1(1):7–15

    Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Ashmore SE, Drew RA, Kaity A (2011) Storage stability using cryopreservation: a case study in papaya. Acta Hort 918:125–130

    Article  CAS  Google Scholar 

  • Asudi GO, Ombwara FK, Rimberia FK et al (2010) Morphological diversity of Kenyan papaya germplasm. Afr J Biotech 9(51):8754–8762

    Google Scholar 

  • Asudi GO, Ombwara FK, Rimberia FK et al (2013) Evaluating diversity among Kenyan papaya germplasm using simple sequence repeat markers. Afr J Food Agr Nutr Dev 13(1):7307–7324

    Google Scholar 

  • Badillo VM (2000) Carica L. vs. Vasconcella St. Hil. (Caricaceae) con la rehabilitación de este ultimo. Ernstia 10:74–79

    Google Scholar 

  • Bennett MD, Leitch IJ (2005) Plant DNA C-values database (Release 4.0, October 2005)

    Google Scholar 

  • Biswas GC, Islam M, Haque MM et al (2004) Some biological aspects of carmine spider mite Tetranychus cinnabarinus Boisd infecting eggplant from Raishahi. J Biol Sci 4:588–591

    Article  Google Scholar 

  • Boshra V, Tajul AY (2013) Papaya—an innovative raw material for food and pharmaceutical processing industry. Health Environ J 4(1):68–75

    Google Scholar 

  • Broekaert WF, Terras FRG, Cammue BPA, Cammune WOR (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Phys 108:1352–1358

    Article  Google Scholar 

  • Bukhori MFM, Jin CS, Khalid N et al (2013) Improved protocol for high frequency plant regeneration through somatic embryogenesis in Carica papaya. Res Bio 4(5):9–19

    Google Scholar 

  • Cai W, Gonsalves C, Tennant P et al (1999) A protocol for efficient transformation and regeneration of Carica papaya L. In vitro Cell Dev Biol Plant 35:61–69

    Article  CAS  Google Scholar 

  • Calderón MV, Mijangos-Cortés JO, Zavala MJ et al (2016) Genetic characterization by amplified fragment length polymorphism (AFLP) markers and morphochemical traits of Carica papaya L. genotypes. Afr. J Biotech 15(21):948–959

    Google Scholar 

  • Caple AD, Cheah KT (2016) Micropropagation of hermaphrodite Carica papaya L ‘Rainbow’ seedlings via axillary bud pathway. Biotechnology BIO-12., Published by the College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii, pp 1–5

    Google Scholar 

  • Carvalho F, Renner SS (2012) A dated phylogeny of the papaya family (Caricaceae) reveals the crop’s closest relatives and the family’s biogeographic history. Mol Phylogen Evol 65(1):46–53

    Article  Google Scholar 

  • Chan YK (2004) Field performance of papaya lines selected for tolerance to ringspot virus disease. J Trop Agr Food Sci 31(2):128–137

    Google Scholar 

  • Chan YK (2009) Breeding Papaya (Carica papaya L.) In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: tropical species. C Springer Science Business Media, LLC. pp 121–159

    Google Scholar 

  • Chan YK, Lee HK, Rusna I (2007) Irradiation-induced variations in M2 populations of Eksotika papaya. J Trop Agric Fd Sci 35(1):49–57

    Google Scholar 

  • Chaves-Bedoya G, Nunez V (2007) A SCAR marker for the sex types determination in Colombian genotypes of Carica papaya. Euphy 153:215–220

    Article  CAS  Google Scholar 

  • Chen MH (1994) Regeneration of pants from protoplasts of Carica species (papaya). In: Bajaj J (ed) Biotechnology in forestry and agriculture, vol 29. Springer-Verlag, NY, pp 52–60

    Google Scholar 

  • Chen MH, Chen CC (1992) Plant regeneration from Carica protoplasts. Plant Cell Rep 11:404–407

    Article  CAS  PubMed  Google Scholar 

  • Clarindo WR, de Carvalho CR, Araujo FS et al (2008) Recovering polyploid papaya in vitro regenerants as screened by flow cytometry. Plant Cell Tiss Organ Cult 92:207–214

    Article  Google Scholar 

  • Cociancich S, Ghazi A, Hetru C et al (1993) Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J Biol Chem 268:19239–19245

    PubMed  CAS  Google Scholar 

  • Conover RA (1976) A program for development of papayas tolerant to the distortion ringspot virus. Proc Flor State Hort Soc 89:229–231

    Google Scholar 

  • Conover RA, Litz RE (1978) Progress in breeding papayas with tolerant to papaya ringspot virus. Proc Flor State Hort Soc 91:182–184

    Google Scholar 

  • Costa FR, Pereira TNS, Gabriel APC et al (2011) ISSR markers for genetic relationships in Caricaceae and sex differentiation in papaya. Crop Breed Appl Biotech 11:352–357

    Article  Google Scholar 

  • De la Fuente J, Ramirez-Rodriguez V, Cabrera-Ponce J, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568

    Article  PubMed  Google Scholar 

  • Deputy JC, Ming R, Ma H et al (2002) Molecular markers for sex determination in papaya (Carica papaya L.). Theor Appl Genet 106:107–111

    Article  CAS  PubMed  Google Scholar 

  • Dhekney SA (2004) Molecular investigations, cryopreservation and genetic transformation of papaya (Carica papaya L.) for cold hardiness. Ph.D. dissertation University of Florida, Gainesville FL 32611, USA

    Google Scholar 

  • Dinesh MR (2010) Papaya breeding in India. Acta Hort 851:69–75

    Article  Google Scholar 

  • Ding X, Gopalakrishnan B, Johnson L et al (1998) Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgen Res 7:77–84

    Article  CAS  Google Scholar 

  • Drew RA (1988) Rapid clonal propagation of papaya in vitro from mature field grown trees. HortScience 23:609–611

    Google Scholar 

  • Ellis RH, Hong TD, Roberts EH (1991) Effect of storage temperature and moisture on the germination of papaya seeds. Seed Sci Res 1(01):69–72

    Article  Google Scholar 

  • Eustice M, Yu Q, Lai CW et al (2008) Development and application of microsatellite markers for genomic analysis of papaya. Tree Genet Genome 4(2):333–341

    Article  Google Scholar 

  • Farzana ARF, Palkadapala PG, Meddegoda KM et al (2008) Somatic embryogenesis in papaya (Carica papaya L.) cv. Rathna. J Nat Sci Foun Sri Lanka 36(1):41–50

    Google Scholar 

  • Fermin GA, Castro LT, Tennant PF (2010) CP-transgenic and non-transgenic approaches for the control of papaya ringspot: current situation and challenges. Transgen Plant J 4(1):1–15

    Google Scholar 

  • Fitch M, Manshardt R, Gonsalves D (1992) Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Nat Biotech 10:1466–1472

    Article  CAS  Google Scholar 

  • Food and Agricultural Organization (2017) Statistical databases. http://apps.fao.org. Accessed 18 May 2017

  • Gatambia EK, Kihurani AW, Rimberia FK et al (2016) In vitro meristem culture for rapid regeneration of papaya plantlets in liquid media. ARRB 9(1):1–7

    Article  Google Scholar 

  • Gonsalves D, Ferreira S (2003) Transgenic papaya: a case for managing risks of papaya ringspot virus in Hawaii. Transgenic papaya: a case for managing risks of papaya ringspot virus in Hawaii. Plant Health Progress https://doi.org/10.1094/php-2003-1113-03-rv

  • Gyanchand, Sharma MK, Kumar S et al (2015) In-vitro androgenesis in papaya (Carica papaya L.) cv. Pusa Nanha. J Appl Nat Sci 7 (1):273–278

    Google Scholar 

  • Hang NT, Chau NM (2010) Radiation induced mutation for improving papaya variety in Vietnam. Acta Hort 851:77–80. https://doi.org/10.17660/ActaHortic.2010.851.8

    Article  Google Scholar 

  • Hofmeyr JDJ (1938) Genetic studies of Carica papaya L. S Afr J Sci 35:300–304

    Google Scholar 

  • Horovitz S, Jimenez H (1967) Cruzameintos interspecificos intergenericos en Caricaceas y sus implcaciones fitoecnicas. Agron Trop 17:323–343

    Google Scholar 

  • Husselman JH, Daneel MS, Sippel AD et al (2016) Mutation breeding as an effective tool for papaya improvement in South Africa. Acta Hort 1111:71–78

    Article  Google Scholar 

  • Imungi JK, Wabule MN (1990) Some chemical characteristics and availability of vitamin A and C from Kenyan varieties of papaya (Carica papaya L.). Ecol Food Nutr 24:115–120

    Article  Google Scholar 

  • Khuspe SS, Hendre RR, Mascarenhas AF et al (1980) Utilization of tissue culture to isolate intergeneric hybrids in Carica L. In: Rao PS, Heble MR, Chadla MS (eds) Plant tissue culture, genetic manipulation and somatic hybridization of plant cells. Bhaba Atomic Research Centre, India, pp 198–205

    Google Scholar 

  • Kramer K, Muthukrishnan S (1997) Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol Biol 27(11):887–900

    Article  CAS  PubMed  Google Scholar 

  • Krishna KL, Paridhavi M, Patel JA (2008) Review on nutritional, medicinal and pharmacological properties of papaya (Carica papaya Linn.). Nat Prod Radian 7(4):364–373

    Google Scholar 

  • Kumar M, Kumar M, Choudhary V (2017) Effect of seed treatment by ethyl methane sulphonate (EMS) on fruit quality of papaya (Carica papaya L.) cv. Pusa Dwarf. Int J App Chem 13(1):145–150

    Google Scholar 

  • Lemos EGM, Silva CLSP, Zaidan HA (2002) Identification of sex in Carica papaya L. using RAPD markers. Euphy 12:179–184

    Article  Google Scholar 

  • Liao Z, Yu Q, Ming R (2017) Development of male-specific markers and identification of sex reversal mutants in papaya. Euphy 213(2):53. https://doi.org/10.1007/s10681-016-1806-z

    Article  CAS  Google Scholar 

  • Litz RE, Conover RA (1978) Recent advances in papaya tissue culture. Proc Fla State Hort Soc 91:180–182

    Google Scholar 

  • Litz RE, Conover RA (1979) In vitro improvement of Carica papaya L. Proc Trop Reg Amer Soc Hort Soc 23:157–159

    Google Scholar 

  • Louw AJ (2016) Papaya breeding—a conventional approach. Acta Hort 1111:61–66

    Article  Google Scholar 

  • Magdalita PM, Laurena AC, Yabut-Perez BM et al (2002) Progress in the development of transgenic papaya: transformation of Solo papaya using acc synthase antisense construct. Acta Hort 575:171–176

    Article  CAS  Google Scholar 

  • Mahadevamma M, Dinesh MR, Kumari VR et al (2012) Evaluation of induced variability in papaya (Carica papaya L.) by physical mutagenesis. CIBTech J Biotech 1(1):66

    Google Scholar 

  • Manshardt RM (1992) Papaya. In: Hammerschlag FA, Litz RE (eds) Biotechnology of perennial fruit crops. CAB international, pp 489–511

    Google Scholar 

  • McCafferty H, Moore P, Zhu J (2006) Improved Carica papaya tolerance to carmine spider mite by the expression of Manduca sexta chitinase transgene. Transgen Res 15:337–347

    Article  CAS  Google Scholar 

  • Mehrotra S, Goel MK, Kukreja AK et al (2007) Efficiency of liquid culture systems over conventional micropropagation: a progress towards commercialization. Afr J Biot 6(13):1484–1492

    CAS  Google Scholar 

  • Milind P, Gurditta (2011) Basketful benefits of papaya. Intl Res J Phar 2(27):6–12

    Google Scholar 

  • Ming R, Hou S, Feng Y et al (2008) NIH Public Access. 452(7190):991–996. https://doi.org/10.1038/nature06856

  • Mishra M, Shukla N, Chandra R (2007) Micropropagation of papaya (Carica papaya L.). In: Jain SM, Haggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, pp 437–441

    Google Scholar 

  • Mumo NM, Rimberia FK, Mamati GE et al (2013) In vitro regeneration of selected Kenyan papaya (Carica papaya L.) lines through shoot tip culture. Afr J Biot 12(49):6826–6832

    Google Scholar 

  • Nakasone HY, Paull RE (1998) Tropical fruits. CAB International, pp 239–269

    Google Scholar 

  • Nishijima W (2002) A new disease hits papaya. Agric Hawaii 3:26

    Google Scholar 

  • Nishina M, Zee F, Ebesu R et al (2000) Papaya production in Hawaii. Fruits Nuts 3:1–8

    Google Scholar 

  • Noorda-Nguyen K, Jia R, Aoki A et al (2010) Identification of disease tolerance loci to Phytophthora palmivora in Carica papaya using molecular marker approach. Acta Hort 851:189–196

    Article  CAS  Google Scholar 

  • Ocampo J, Dambier D, Ollitrault P et al (2006) Microsatellite markers in Carica papaya L.: isolation, characterization and transferability to Vasconcellea species. Mol Ecol Notes 6(1):212–217

    Article  CAS  Google Scholar 

  • Ogata T, Yamanaka S, Shoda M et al (2016) Current status of tropical fruit breeding and genetics for three tropical fruit species cultivated in Japan: pineapple, mango, and papaya. Breed Sci 66:69–81

    Article  PubMed  PubMed Central  Google Scholar 

  • Oloyede OI (2005) Chemical profile of unripe pulp of Carica papaya. Pak J Nut 4:379–381

    Article  Google Scholar 

  • Panjaitan SB, Aziz MA, Rashid AA et al (2007) In vitro plantlet regeneration from shoot tip of field-grown hermaphrodite papaya (Carica papaya L. cv. Eksotika). Int J Agr Bio 6:827–832

    Google Scholar 

  • Parasnis AS, Ramakrishna W, Chowdari KV et al (1999) Microsatellite (GATA) reveals sex specific differences in papaya. Theor Appl Genet 99:1047–1052. https://doi.org/10.1007/s001220051413

    Article  CAS  Google Scholar 

  • Parasnis AS, Gupta VS, Tamhankar SA et al (2000) A highly reliable sex diagnostic PCR assay for mass screening of papaya seedlings. Mol Breed 6:337–344. https://doi.org/10.1023/A:1009678807507

    Article  CAS  Google Scholar 

  • Paterson AH, Felker P, Hubbell SP et al (2008) The fruits of tropical plant genomics. Trop Plant Biol 1(1):3–19. https://doi.org/10.1007/s12042-007-9004-8

    Article  Google Scholar 

  • Popenoe W (1974) Manual of tropical and subtropical fruits. Hafner Press, NY, pp 225–249

    Google Scholar 

  • Purcifull D (1972) CMI/AAB Descr. Pl. Viruses, vol 84, p 3. http://www.dpvweb.net/dpv/showdpv.php?dpvno=084

  • Ray PK (2002) Breeding tropical and subtropical fruits. Narosa Publishing House, New Delhi, pp 106–128

    Google Scholar 

  • Reddy SR, Krishna RB, Reddy KJ (2012) Sex determination of papaya (Carica papaya) at seedling stage through RAPD markers. Res Biotech 3:21–28

    Google Scholar 

  • Reuveni O, Shlesinger DR, Lavi U (1990) In vitro clonal propagation of dioecious Carica papaya. Plant Cell, Tissue Organ Cult 20:41–46

    Article  Google Scholar 

  • Rimberia F, Adaniya S (2010) Recent advances in breeding of papaya. Another culture: a practical methodology for breeding female papaya. VDM Verlag Dr. Muller, Germany, pp 13–64

    Google Scholar 

  • Rimberia FK, Sunagawa H, Urasaki N et al (2005) Embryo induction via anther culture in papaya and sex analysis of the derived plantlets. Sci Hort 103:199–298

    Article  CAS  Google Scholar 

  • Rimberia FK, Adaniya S, Etoh T et al (2006a) Sex and ploidy of anther culture derived papaya (Carica papaya L.). Euphy 149:53–59

    Article  Google Scholar 

  • Rimberia FK, Adaniya S, Kawajiri M et al (2006b) Parthenocarpic ability of papaya and promotion of fruit swelling by gibberellin treatment. J Appl Hort 8(1):58–61

    Google Scholar 

  • Rimberia FK, Adaniya S, Ishimine Y et al (2007) Morphology of papaya plants derived via anther culture. Sci Hort 111(3):213–219

    Article  Google Scholar 

  • Rodriquez-Pastor MC, Galan-Sauco V, Herero-Romero M (1990) Evaluation of papaya autogamy. Fruits 45:387–391

    Google Scholar 

  • Rosales LS, Leor NB, Castro SR et al (2000) Coat protein sequence comparison of three Mexican isolates of papaya ring spot virus with other geographical isolates reveal a close relationship to American and Australian isolates. Arch Virol 145:835–843

    Article  Google Scholar 

  • Saksena P (2013) Cell and tissue culture studies in papaya (Carica papaya L.)—a brief review. Nanobiotech Univer 4(1&2):1–11

    Google Scholar 

  • Sankat CK, Maharaj R (1997) Papaya. In: Mitra SK (ed) Postharvest physiology and storage of tropical and subtropical fruits. UK CAB International, pp 167–189

    Google Scholar 

  • Saran PL, Choudhary R (2013) Drug bioavailability and traditional medicaments of commercially available papaya—a review. Afr J Agr Res 8(25):3216–3223

    CAS  Google Scholar 

  • Saran PL, Choudhary R, Solanki IS et al (2015) Genetic variability and relationship studies in new Indian papaya (Carica papaya L.) germplasm using morphological and molecular markers. Turkish J Agri Forest 39:310–321. https://doi.org/10.3906/tar-1409-148

    Article  CAS  Google Scholar 

  • Scheldeman X, Van Damme P (2003) Horticultural potential of Andean fruit crops, exploring their centre of origin. In: Düzyaman E, Tüzel Y (eds) Proceedings of the international symposium on sustainable use of plant biodiversity. Antalya, January 2003. Acta Hort 598:97–102

    Google Scholar 

  • Setargie A, Mekbib F, Abraha E (2015) In vitro propagation of papaya (Carica papaya L.). World J Agri Sci 11 (2):84–88

    Google Scholar 

  • Singh K, Ram M, Kumar A (2010) Forty years of papaya research at Pusa, Bihar, India. Acta Hort 851:81–88

    Article  Google Scholar 

  • Soni A, Prakash J, Kaluram SK et al (2017) Efficiency of morphological, physiological and biochemical parameters related to sex expression in papaya. Indian J Hort 74(1):6–10. https://doi.org/10.5958/0974-0112.2017.00005.6

    Article  Google Scholar 

  • Storey WB (1938) Segregations of sex types in solo papaya and their application to the selection of seed. Proc Amer Soc Hort Sci 35:83–85

    Google Scholar 

  • Storey WB (1953) Genetics of the papaya. J Hered 44:70–78

    Article  Google Scholar 

  • Sun DQ, Guo QG, Lu XH et al (2011) Production of triploid plants of papaya by endosperm culture. Plant Cell Tiss Org Cult 104:23–29

    Article  Google Scholar 

  • Teixeira da Silva JA, Rashid Z, Tan Nhut D et al (2007) Papaya (Carica papaya L.) biology and biotechnology. Tree For Sci Biotech 1(1):47–73

    Google Scholar 

  • Terras F et al (1995) Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7:573–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi S, Suzuki JY, Ferreira SA et al (2008) Papaya ringspot virus-P: characteristics, pathogenicity, sequence variability and control. Mol Plant Path 9(3):269–280

    Article  CAS  Google Scholar 

  • Tsai CC, Shih HC, Ko YZ et al (2016) Direct LAMP Assay without prior DNA purification for sex determination of papaya. Int J Mol Sci 17(1630):1–12. https://doi.org/10.3390/ijms17101630w

    Article  Google Scholar 

  • Tsay HS, Su CY (1985) Anther culture of papaya (Carica papaya L.). Plant Cell Rep 4:28–30

    Article  CAS  PubMed  Google Scholar 

  • Ueno H, Urasaki N, Natsume S et al (2015) Genome sequence comparison reveals a candidate gene involved in male-hermaphrodite differentiation in papaya (Carica papaya) trees. Mol Genet Genom 290:661–670

    Article  CAS  Google Scholar 

  • Urasaki N, Tokumoto M, Tarora K et al (2002a) A male and hermaphrodite specific RAPD marker for papaya (Carica papaya L.). Theor Appl Genet 104:281–285

    Article  CAS  PubMed  Google Scholar 

  • Urasaki N, Tarora K, Uehara T et al (2002b) Rapid and highly reliable sex diagnostic PCR assay for papaya (Carica papaya L.). Breed Sci 52:333–335

    Article  CAS  Google Scholar 

  • Van Droogenbroeck B, Kyndt T, Maertens I et al (2004) Phylogenetic analysis of the highland papayas (Vasconcellea) and allied genera (Caricaceae) using PCR-RFLP. Theor Appl Genet 108:1473–1486

    Article  CAS  PubMed  Google Scholar 

  • Villegas VN (1997) Carica papaya L. In: Verheij EWM, Coronel RE (eds) Plant resources of South-East Asia 2: edible fruits and nuts. PROSEA Foundation, Bogor, Indonesia, pp 108–112

    Google Scholar 

  • Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc Roy Soc Lon B 268:2211–2220

    Article  Google Scholar 

  • Yeh S, Gonsalves D (1994) Practices and perspective of control of papaya ringspot virus by cross protection. In: Harris KF (ed) Advances in disease vector research, vol 10. Springer-Verlag, New York, pp 237–257

    Chapter  Google Scholar 

  • Yeh S, Jan F, Chiang C et al (1992) Complete nucleotide-sequence and genetic organization of papaya ringspot virus-RNA. J Gen Virol 73:2531–2541

    Article  CAS  PubMed  Google Scholar 

  • Yeh SD, Tripathi S, Bau HJ et al (2003) Identification and variability analysis of virus strain capable of breaking transgenic resistance of papaya conferred by coat protein gene of papaya ring spot virus. In: 7th International congress of plant molecular biology, Barcelona, Spain 23–28 June, p 367(Abst)

    Google Scholar 

  • Yogiraj V, Goyal PK, Chauhan CS (2014) Carica papaya Linn: an overview. Int J Herb Med 2(5):1–8

    Google Scholar 

  • Yu TA, Yeh SD, Cheng YH et al (2000) Efficient rooting for establishment of papaya plantlets by micropropagation. Plant Cell, Tissue Organ Cult 61:29–35

    Article  CAS  Google Scholar 

  • Zhu YJ, Agbayani R, Moore PH (2007) Ectopic expression of Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen. Planta 226:87–97

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Jomo Kenyatta University of Agriculture and Technology (JKUAT), Research Production and Extension (RPE) Division for funding the papaya varietal development project from 2008 to 2014, the Regional Universities Forum for Capacity Building in Agriculture (RUFORUM) for funding papaya tissue culture project 2010–2012 and the Africa Union-African innovation-JKUAT and PAUSTI (Africa –ai-JAPAN) for funding agronomic evaluation of papaya varieties from 2015 to date.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredah Karambu Rimberia .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Research Institutes and Online Resources Relevant to Papaya Genetic Improvement Research

Country

Institution

Specialization

Research activities

Contact information

Australia

Griffith University

Teaching and Research institute

Biotechnology of the papaya

Prof. Dr. Roderick A. Drew

Griffith Sciences, Logan Campus, Griffith University, Meadowbrook, QLD 4131 Australia

Telephone: (61)733821291

Fax: (61)737357618

E-mail: r.drew@griffith.edu.au

Brazil

Capixaba Institute for Research , Technical Assistance and Rural Extension (INCAPER)

Research , technical assistance and rural extension

Germplasm selection and improvement

Eng Agr, D.

Sc., Luiz Augusto Lopes Serrano

INCAPER/CRDR Nordeste, C. P. 62, 29900-970, Linhares-ES.

E-mail: lalserrano@incaper.es.gov

India

Indian Agricultural Research Institute Regional Station, Pusa, Bihar, India

Research institute

Breeding papaya varieties of uniform, high yielding with better quality for wider adaptability

Dr. Tapas Ranjan Das

Phone: 06274-240232

Fax: 06274-240236

E-mail: head_bihar@iari.res.in

Indonesia

Indonesian Tropical Fruit Research Institute (ITFRI)

Research institute

Breeding and biotechnology

Jl. Raya Solok, Aripan Km. 8, PO Box. 5, Solok 27301, West Sumatra

Phone: 0755-20137

Fax: 0755-20592

Email: rif@padang.wasantara.net.id;

balitbu@litbang.pertanian.go.id

Kenya

Jomo Kenyatta University of Agriculture and Technology

Teaching and Research institute

Varietal Development and Evaluation

Dr. Fredah K. Rimberia,

P.O. Box 62000-00200 Nairobi Kenya

Phone: +254726856304

Email: frenda@agr.jkuat.ac.ke or fredawanza@yahoo.com

Malaysia

Felda Agricultural Services Sdn Bhd

Commercial Agribusiness firm

Agricultural extension and Disease management in Papaya

Menara Felda, Platinum Park, Persiaran KLCC, Kuala Lumpur, Malaysia 50088

+60 3-2859 0366

Email: feldabiotech@felda.net.my

Nigeria

The National Horticultural Research institute

Research institutes

Papaya Varietal development and evaluation

Ms. Olubunmi Ibitoye

National Horticultural Research Institute, P. M. B. 5432 Jericho Reservation Area, IDI-ISHIN, Oyo, Ibadan, Nigeria

Telephone: (234)8023629104

E-mail bunmiajisafe@yahoo.com

Philippines

Institute of Plant Breeding ,

College of Agriculture and Food Science, University of the Philippines, Los Baños

Research institute

National biotechnology  research center and repository for all crops

Office of the director, 4031 College, Laguna, Philippines Telephone: (049) 536-5287; (049) 543-9571

Email: ipb.uplb@up.edu.ph

South Africa

Neofresh (Pty) Ltd.

Commercial fruit growers and exporters

Selection , hybridization and production of high quality papaya fruit for supermarkets and export outlets

Dr Aart Louw (Chief Researcher and Plant Breeder)

PO Box 201 Sonpark

1206 Mpumalanga RSA

T +27 13 590 0947

adminmanager@neofresh.net

www.neofresh.net

Thailand

East West Seed Company

Commercial Seed company

Breeding

Lamai Yapanan

Business Development Manager, 7 Moo 8, Chiang Mai Praw Road, 50290, Chiang mai, Thailand

Email: lamai.yapanan@eastwestseed.com

United States of America-Hawaii

Hawaii Agricultural Research Centre (HARC)

Research Centre

Tissue culture and transformation of papaya

94-340 Kunia Rd, Waipahu, HI 96797, USA

Phone:+1 808-677-5541

United States of America-Hawaii

University of Hawaii

 

Papaya breeding

Dr. Dennis Gonsalves

789 Hoolaulea Street, Hilo Hawaii 96720 USA

E-mail dennisgonsal@gmail.com

Appendix 2: Genetic Resources

Country

Cultivar

Sex type

Flesh color

 Australia

Improved Petersen

Dioecious

Yellow

Guinea Gold

Hermaphrodite

Yellow

Sunnybank/S7

Dioecious

Yellow

Richter/Arline

Dioecious

Yellow

 America – Mexico

Verde

Gialla

Cera

Chincona

 USA – Florida

Cariflora

Dioecious

Yellow

Betty

Dioecious

Yellow

Homestead

 Dioecious

Yellow

 USA – Hawaii

Kapoho Solo

Hermaphrodite

Yellow

Sunrise

Hermaphrodite

Red

Waimanalo

Hermaphrodite

Yellow

Rainbow

Hermaphrodite

Yellow

 Venezuela

Paraguanera

 –

Roja

 –

Red

 Caribbean – Barbados

Wakefield

 –

Graeme 5, and 7

 –

 Cuba

Maradol

Hermaphrodite

Red

 Trinidad

Santa Cruz Giant

 –

Cedro

 –

 Dominican Republic

Cartagena

Hermaphrodite

Yellow

 Asia – India

Coorg Honey Dew

Hermaphrodite

Yellow

Coimbitor 2

Dioecious

Yellow

 Indonesia

Semangka

Hermaphrodite

Red

Dampit

Hermaphrodite

Red

 Malaysia

Eksotika

Hermaphrodite

Red

Sekaki

Hermaphrodite

Red

 Philippines

Cavite/Sinta

Hermaphrodite

Red

 Taiwan

Tainung No. 5

Hermaphrodite

Red

 Thailand

Sai-nampueng

Hermaphrodite

Red

Khaek Dam

Hermaphrodite

Red

 South Africa

Hortus Gold

 Dioecious

Yellow

Kaapmuiden

Yellow

Honey Gold

 Dioecious

Yellow

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rimberia, F.K., Ombwara, F.K., Mumo, N.N., Ateka, E.M. (2018). Genetic Improvement of Papaya (Carica papaya L.). In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Fruits. Springer, Cham. https://doi.org/10.1007/978-3-319-91944-7_21

Download citation

Publish with us

Policies and ethics