Skip to main content

Citrus Genetics and Breeding

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Fruits

Abstract

Citrus is one of the most important fruit crops worldwide. It is grown in more than 130 countries, mainly in tropical and subtropical areas. Sweet orange represents about 60% of total citrus production , being marketed as fresh fruit or as processed juice. Mandarins represent about 21% of total citrus fruit production and are intended for the fresh market. Conventional breeding in citrus by hybridization is hampered by its complex genetics and reproductive biology (apomixis , partial pollen and/or ovule sterility , cross- and self-incompatibility and high heterozigosity). In addition, citrus have a long juvenile period and usually take several years for hybrids to set fruit . Despite these limitations, many citrus breeding programs exploiting both diploidy and polyploidy as well as mutation breeding exist worldwide. From them, very important advances in releasing new varieties adapted to new market demands, as well as achievements in gaining knowledge of citrus genetics and genomics . The development of molecular markers , the availability of a reference genetic map, the advances in biotechnological tools and the complete genome sequence of several citrus species allow the acceleration of key studies such as germplasm characterization , marker -assisted selection , gene function discovery and variety improvement .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott A (2015) Europe’s genetically edited plants stuck in legal limbo. Nature 528:319–320

    Article  CAS  PubMed  Google Scholar 

  • Abdurakhmonov IY, Abdukarimov A (2008) Application of association mapping to understanding the genetic diversity of plant germplasm resources. Int J Plant Genom ID 574927. https://doi.org/10.1155/2008/574927

  • Agüero J, Ruiz-Ruiz S, Vives MC et al (2012) Development of viral vectors based on Citrus leaf blotch virus to express foreign proteins or analyze gene function in citrus plants. Mol PlantMicrobe Interact 25:1326–1337

    Article  CAS  Google Scholar 

  • Agüero J, Vives MC, Velázquez K et al (2013) Citrus leaf blotch virus invades meristematic regions in Nicotiana benthamiana and citrus. Mol Plant Pathol 14:610–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agüero J, Vives MC, Velázquez K et al (2014) Effectiveness of gene silencing induced by viral vectors based on citrus leaf blotch virus is different in Nicotiana benthamiana and citrus plants. Virol 460–461:154–164

    Article  CAS  Google Scholar 

  • Albrecht U, Bowman KD (2008) Gene expression in Citrus sinensis (L.) Osbeck following infection with the bacterial pathogen ‘Candidatus Liberibacter asiaticus’ causing Huanglongbing in Florida. Plant Sci 175(3):291–306

    Article  CAS  Google Scholar 

  • Aleza P (2015) Workshop on new mandarin varieties. Acta Hort 1065:193–199

    Article  Google Scholar 

  • Aleza P, Juárez J, Hernández M et al (2009a) Recovery and characterization of a Citrus clementina Hort. ex Tan. ‘Clemenules’ haploid plant selected to establish the reference whole Citrus genome sequence. BMC Plant Biol 9:110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aleza P, Juárez J, Ollitrault P, Navarro L (2009b) Production of tetraploid plants of non apomictic citrus genotypes. Plant Cell Rep 28(12):1837–1846

    Article  CAS  PubMed  Google Scholar 

  • Aleza P, Cuenca J, Juárez J et al (2010a) ‘Garbi’ mandarin: a new late-maturing triploid hybrid. HortSci 45(1):139–141

    Google Scholar 

  • Aleza P, Juárez J, Cuenca J et al (2010b) Recovery of citrus triploid hybrids by embryo rescue and flow cytometry from 2x x 2x sexual hybridisation and its application to extensive breeding programs. Plant Cell Rep 29(9):1023–1034

    Article  CAS  PubMed  Google Scholar 

  • Aleza P, Froelicher Y, Schwarz S et al (2011) Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment. Ann Bot 108(1):37–50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aleza P, Juárez J, Cuenca J et al (2012) Extensive citrus triploid hybrid production by 2x x 4x sexual hybridizations and parent-effect on the length of the juvenile phase. Plant Cell Rep 31(9):1723–1735

    Article  CAS  PubMed  Google Scholar 

  • Aleza P, Cuenca J, Hernández M et al (2015) Genetic mapping of centromeres of the nine Citrus clementina chromosomes using half-tetrad analysis and recombination patterns in unreduced and haploid gametes. BMC Plant Biol 15:80. https://doi.org/10.1186/s12870-015-0464-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aleza P, Cuenca J, Juárez J et al (2016a) Inheritance in doubled-diploid clementine and comparative study with SDR unreduced gametes of diploid clementine. Plant Cell Rep 35(8):1573–1586

    Article  CAS  PubMed  Google Scholar 

  • Aleza P, Garcia-Lor A, Juárez J, Navarro L (2016b) Recovery of citrus cybrid plants with diverse mitochondrial and chloroplastic genome combinations by protoplast fusion followed by in vitro shoot, root and embryo micrografting. Plant Cell, Tissue Organ Cult 126(2):205–217

    Article  CAS  Google Scholar 

  • Allario T, Brumos J, Colmenero-Flores J et al (2011) Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression. J Exp Bot 62(8):2507–2519

    Article  PubMed  CAS  Google Scholar 

  • Alós E, Roca M, Iglesias DJ et al (2008) An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis. Plant Phys 147:1300–1315

    Article  CAS  Google Scholar 

  • Alquézar B, Rodrigo MJ, Zacarías L (2008) Regulation of carotenoid biosynthesis during fruit maturation in the red-fleshed orange mutant Cara Cara. Phytochem 69:1997–2007

    Article  CAS  Google Scholar 

  • Alquézar B, Rodríguez A, de la Peña M, Peña L (2017) Genomic analysis of terpene synthase family and functional characterization of seven sesquiterpene synthases from Citrus sinensis. FrontPlant Sci 8:1481. https://doi.org/10.3389/fpls.2017.01481

    Article  Google Scholar 

  • Ancillo G, Gadea J, Forment J et al (2007) Class prediction of closely related plant varieties using gene expression profiling. J Exp Bot 58:1927–1933

    Article  CAS  PubMed  Google Scholar 

  • Aprile A, Federici C, Close T et al (2011) Expression of the H + -ATPase AHA10 proton pump is associated with citric acid accumulation in lemon juice sac cells. Funct Integr Genom 11:1–13

    Article  CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9(33):208–218

    Article  CAS  Google Scholar 

  • Asins MJ, Juárez J, Pina JA et al (2002) Nulessín, una nueva clementina. Levante Agrícola 359:36–40

    Google Scholar 

  • Asins MJ, Bernet GP, Ruiz C et al (2004) QTL analysis of Citrus Tristeza Virus-citradia interaction. TheorApp Genet 108:603–611

    Article  CAS  Google Scholar 

  • Asins MJ, Fernandez-Ribacoba J, Bernet GP et al (2012) The position of the major QTL for Citrus Tristeza Virus resistance is conserved among Citrus grandis, C. aurantium and Poncirus trifoliata. Mol Breed 29:575–587

    Article  Google Scholar 

  • Balas FC, Osuna MD, Domínguez G et al (2014) Ex situ conservation of underutilised fruit tree species: establishment of a core collection for Ficus carica L. using microsatellite markers (SSRs). Tree Genet Genom 10:703–710

    Google Scholar 

  • Barkley NA (2003) Genetic diversity in a Citrus germplasm collection characterized with simple sequence repeat markers. Ph.D. dissertation, University of California, Riverside

    Google Scholar 

  • Barkley NA, Roose ML, Krueger RR, Federici CT (2006) Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor App Genet 112:1519–1531

    Article  CAS  Google Scholar 

  • Barkley NA, Krueger RR, Federici CT, Roose ML (2009) What phylogeny and gene genealogy analyses reveal about homoplasy in citrus microsatellite alleles. Pl Syst Evol 282:71–86

    Article  CAS  Google Scholar 

  • Barrett HC, Rhodes AM (1976) A numerical taxonomic study of affinity relationships in cultivated Citrus and its close relatives. Syst Bot 1:105–136

    Article  Google Scholar 

  • Bassene JB, Froelicher Y, Navarro L et al (2011) Influence of mitochondria on gene expression in a citrus cybrid. Plant Cell Rep 30(6):1077–1085

    Article  CAS  PubMed  Google Scholar 

  • Bastiaanssen HJM, Van Den Berg PMMM, Lindhout P et al (1998) Postmeiotic restitution in 2n-egg formation of diploid potato. Hered 81:20–27

    Article  CAS  Google Scholar 

  • Bausher MG, Singh ND, Lee SB et al (2006) The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var ‘Ridge Pineapple’: organization and phylogenetic relationships to other angiosperms. BMC Plant Biol 6:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belaj A, Dominguez-García MC, Atienza GC (2012) Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet Genomes 8:365–378

    Article  Google Scholar 

  • Bermejo A, Pardo J, Cano A (2012) Murcott seedless: influence of gamma irradiation on citrus production and fruit quality. Span J Agric Res 10:768–777. https://doi.org/10.5424/sjar/2012103-460-11

    Article  Google Scholar 

  • Bernet GP, Gorris MT, Carbonell EA et al (2008) Citrus tristeza virus resistance in a core collection of sour orange based on a diversity study of three germplasm collections using QTL-linked markers. Plant Breed 127:398–406

    Article  Google Scholar 

  • Bové JM (2014) Huanglongbing or yellow shoot, a disease of Gondwanan origin: will it destroy citrus worldwide? Phytoparas 42(5):579–583

    Article  Google Scholar 

  • Bowman KD, McCollum G, Albrecht U (2016) Performance of ‘Valencia’ orange (Citrus sinensis [L.] Osbeck) on 17 rootstocks in a trial severely affected by huanglongbing. Sci Hort 201:355–361

    Article  Google Scholar 

  • Breseghello F, Sorrells M (2006) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46(3):1323–1330

    Article  Google Scholar 

  • Bretagnolle F, Thompson JD (1995) Tansley Review no-78 - Gametes with the somatic chromosome-number - mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1–22

    Article  PubMed  Google Scholar 

  • Bretó MP, Ruiz C, Pina JA, Asíns MJ (2001) The diversification of Citrus clementina Hort. ex Tan., a vegetatively propagated crop species. Mol Phylog Evol 21:285–293

    Article  CAS  Google Scholar 

  • Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824

    Article  Google Scholar 

  • Butelli E, Licciardello C, Zhang Y et al (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24(3):1242–1255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Butelli E, Garcia-Lor A, Licciardello C et al (2017) Changes in anthocyanin production during domestication of citrus. Plant Physiol 173:2225–2242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai X, Xu SS (2007) Meiosis-driven genome variation in plants. Curr Genom 8:151–161

    Article  CAS  Google Scholar 

  • Cameron JW, Bernett RH (1978) Use of sexual tetraploid seed parents for production of triploid citrus hybrids. HortSci 13:167–169

    Google Scholar 

  • Cameron JW, Frost HB (1968) Genetics, breeding and nucellar embryony. In: ReutherW, Batcherlor LD, Webber HJ (eds) The Citrus Industry, vol II. University of California Press, Berkeley, pp 325–370

    Google Scholar 

  • Cao H, Biswas MK, Lü Y et al (2011) Doubled haploid callus lines of Valencia sweet orange recovered from anther culture. Plant Cell Tiss Organ Cult 104:415

    Article  Google Scholar 

  • Cercos M, Soler G, Iglesias DJ et al (2006) Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant Mol Biol 62:513–527. https://doi.org/10.1007/s11103-006-9037-7

    Article  PubMed  CAS  Google Scholar 

  • Cervera M, Navarro A, Navarro L, Peña L (2008) Production of transgenic adult plants from Clementine mandarin by enhancing cell competence for transformation and regeneration. Tree Phys 28:55–66

    Article  CAS  Google Scholar 

  • Chen C, Gmitter FG (2013) Mining of haplotype-based expressed sequence tag single nucleotide polymorphismsin in citrus. BMC Genom 14:746

    Article  CAS  Google Scholar 

  • Chen C, Lyon MT, O’Malley D et al (2008) Origin and frequency of 2n gametes in Citrus sinensis x Poncirus trifoliata and their reciprocal crosses. Plant Sci 174:1–8

    Article  CAS  Google Scholar 

  • Cheng FS, Roose ML (1995) Origin and inheritance of dwarfing by the citrus rootstock Poncirus trifoliate`Flying Dragon’. J Am Soc Hort Sci 120(2):286–291

    Google Scholar 

  • Cheng Y, de Vicente MC, Meng H et al (2005) A set of primers for analyzing chloroplast DNA diversity in citrus and related genera. Tree Phys 25:661–672

    Article  Google Scholar 

  • Chin H, Roberts E (1980) Recalcitrant crop seeds. Tropical Press SDN, BHD, Kuala Lumpur

    Google Scholar 

  • Coletta Filho HD, Machado MA, Targon MLPN et al (1998) Analysis of the genetic diversity among mandarins (Citrus spp.) using RAPD markers. Euphy 102:133–139

    Article  CAS  Google Scholar 

  • Cuenca J, Aleza P, Juárez J et al (2010) ‘Safor’ mandarin: a new citrus midlate triploid hybrid. HortSci 45:977–980

    Google Scholar 

  • Cuenca J, Froelicher Y, Aleza P et al (2011) Multilocus half-tetrad analysis and centromere mapping in citrus: evidence of SDR mechanism for 2n megagametophyte production and partial chiasma interference in mandarin cv. ‘Fortune’. Hered 107:462–470

    Article  CAS  Google Scholar 

  • Cuenca J, Aleza P, Vicent A et al (2013a) Genetically based location from triploid populations and gene ontology of a 3.3-Mb genome region linked to Alternaria brown spot resistance in citrus reveal clusters of resistance genes. PLoS ONE 8:e76755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cuenca J, Aleza P, Navarro L, Ollitrault P (2013b) Assignment of SNP allelic configuration in polyploids using competitive allele-specific PCR: application to citrus triploid progeny. Ann Bot 111(4):731–742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cuenca J, Aleza P, Juárez J et al (2015) Maximum-likelihood method identifies meiotic restitution mechanism from heterozygosity transmission of centromeric loci: application in citrus. SciRep 5:9897

    CAS  Google Scholar 

  • Cuenca J, Aleza P, Garcia-Lor A et al (2016) Fine mapping for identification of citrus Alternaria brown spot candidate resistance genes and development of new SNP markers for marker-assisted selection. Front Plant Sci 7:1948

    PubMed  PubMed Central  Google Scholar 

  • Curk F, Ancillo G, Garcia-Lor A et al (2014) Next generation haplotyping to decipher nuclear genomic interspecific admixture in Citrus species: analysis of chromosome 2. BMC Genet 15:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Curk F, Ancillo G, Ollitrault F et al (2015) Nuclear species-diagnostic SNP markers mined from 454 amplicon sequencing reveal admixture genomic structure of modern citrus varieties. PLoS ONE 10:e0125628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Curk F, Ollitrault F, Garcia-Lor A et al (2016) Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers. Ann Bot 117(4):565–583

    Article  PubMed  PubMed Central  Google Scholar 

  • Curtolo M, Cristofani-Yali M, Gazaffi R et al (2017) QTL mapping for fruit quality in Citrus using DArTseq markers. BMC Genom 18:289

    Article  CAS  Google Scholar 

  • Cyranoski D (2015) CRISPR tweak may help gene-edited crops bypass biosafety regulation. Nature News. https://doi.org/10.1038/nature.2015.18590

    Article  Google Scholar 

  • Dalkilic Z, Timmer LW, Gmitter FG (2005) Linkage of an Alternaria disease resistance gene in mandarin hybrids with RAPD fragments. J Am Soc Hort Sci 130(2):191–195

    CAS  Google Scholar 

  • Dambier D, Benyahia H, Pensabene-Bellavia G et al (2011) Somatic hybridization for citrus rootstock breeding: an effective tool to solve some important issues of the Mediterranean citrus industry. Plant Cell Rep 30(5):883–900

    Article  CAS  PubMed  Google Scholar 

  • Davies FS, Albrigo LG (1994) Citrus. Crops production science in horticulture, CAB International, UK

    Google Scholar 

  • de Moraes A, dos Santos Soares Filho W, Guerra M (2007) Karyotype diversity and the origin of grapefruit. Chrom Res 1:115–121

    Google Scholar 

  • de Souza JD, de Andrade Silva EM, Coelho Filho MA et al (2017) Different adaptation strategies of two citrus scion/rootstock combinations in response to drought stress. PLoS ONE 12(5):e0177993

    Article  CAS  Google Scholar 

  • De Storme N, Geelen D (2013) Sexual polyploidization in plants—cytological mechanisms and molecular regulation. New Phytol 198:670–684

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng Z, Huang S, Xiao S, Gmitter FG (1997) Development and characterization of SCAR markers linked to the Citrus Tristeza Virus resistance gene from Poncirus trifoliata. Genome 40:697–704

    Article  CAS  PubMed  Google Scholar 

  • Duran-Vila N (1995) Cryopreservation of germplasm of citrus. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Cryopreservation of plant germplasm I, Springer, Berlin, pp 70–96

    Google Scholar 

  • Duran-Vila N, Janse J, Foissac X et al (2014) Addressing the threat of Huanglongbing in the Mediterranean region: a challenge to save the citrus industry. J Plant Pathol 96:S4.3-S4.8

    Google Scholar 

  • Dutt M, Barthe G, Irey M, Grosser J (2015) Transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against Huanglongbing (HLB; citrus greening). PLoS ONE 10(9):e0137134. https://doi.org/10.1371/journal.pone.0137134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ellwood SR, D’Souza NK, Kamphuis LG et al (2006) SSR analysis of the Medicago truncatula SARDI core collection reveals substantial diversity and unusual genotype dispersal throughout the Mediterranean basin. Theor Appl Genet 112:977–983

    Article  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple Genotyping-by-Sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Endo T, Shimada T, Fujii H et al (2005) Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgen Res 14:703–712

    Article  CAS  Google Scholar 

  • Engelmann F (1997) In vitro conservation methods. In: Ford-Lloyd BV, Newburry JH, Callow JA (eds) Biotechnology and plant genetic resources: conservation and use. CABI, Wallingford, UK, pp 119–162

    Google Scholar 

  • Escribano P, Viruel MA, Hormaza JI (2008) Comparison of different methods to construct a core germplasm collection in woody perennial species with simple sequence repeat markers. A case study in cherimoya (Annona cherimola, Annonaceae), an underutilised subtropical fruit tree species. Ann AppBiol 153:25–32

    Google Scholar 

  • Esen A, Soost RK (1971) Unexpected triploids in Citrus: their origin, identification, and possible use. J Hered 62(6):329–333

    Article  Google Scholar 

  • Esen A, Soost RK (1973) Precocious development and germination of spontaneous triploid seeds in Citrus. J Hered 64(3):147–154

    Article  Google Scholar 

  • Esen A, Soost RK, Geraci G (1979) Genetic evidence for the origin of diploid megagametophytes in Citrus. J Hered 70:5–8

    Article  Google Scholar 

  • Esselink GD, Nybom H, Vosman B (2004) Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting-peak ratios) method. Theor Appl Genet 109:402–408

    Article  CAS  PubMed  Google Scholar 

  • Fajardo DS, La Bonte DR, Jarret RL (2002) Identifying and selecting for genetic diversity in Papua New Guinea sweetpotato Ipomoea batatas (L.) Lam. germplasm collected as botanical seed. Genet Res Crop Evol 49(5): 463–470

    Google Scholar 

  • Fang D, Roose ML, Krueger RR, Federici CT (1997) Fingerprinting trifoliate orange germ plasm accessions with isozymes, RFLPs, and inter-simple sequence repeat markers. Theor Appl Genet 95:211–219

    Article  CAS  Google Scholar 

  • FAO (2017) www.faostat.org (accessed March 07 2018)

  • Febres V, Fisher L, Khalaf A, Moore GA (2011) Citrus transformation: challenges and prospects. In: María Alvarez (ed) InTech. https://doi.org/10.5772/24526

  • Federici CT, Fang DQ, Scora RW, Roose ML (1998) Phylogenetic relationships within the genus Citrus (Rutaceae) and related genera as revealed by RFLP and RAPD analysis. Theor Appl Genet 94:812–822

    Article  Google Scholar 

  • Folimonov AS, Folimonova SY, Bar-Joseph M, Dawson WO (2007) A stable RNA virus-based vector for citrus trees. Virology 368:205–216. https://doi.org/10.1016/j.virol.(2007).06.038

    Article  PubMed  CAS  Google Scholar 

  • Forment J, Gadea J, Huerta L et al (2005) Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Mol Biol 57:375–391

    Article  CAS  PubMed  Google Scholar 

  • Forner JB, Forner-Giner MA, Alcaide A (2003) Forner-Alcaide 5 and Forner-Alcaide 13: two new citrus rootstocks released in Spain. HortSci 38(4):629

    Google Scholar 

  • Forner-Giner MA, Primo-Millo E, Forner JB (2009a) Performance of Forner-Alcaide 5 and Forner-Alcaide 13, hybrids of Cleopatra mandarin × Poncirus trifoliata, as salinity-tolerant citrus rootstocks. J Am Pomolog Soc 63(2):72–80

    Google Scholar 

  • Forner-Giner MA, Llosá MJ, Carrasco J et al (2009b) Differential gene expression analysis provides new insights into the molecular basis of iron deficiency stress response in the citrus rootstock Poncirus trifoliata (L.) Raf. J Exp Bot 61(2):483–490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forner-Giner MA, Legaz F, Primo-Millo E, Forner JB (2011) Nutritional responses of citrus rootstocks to salinity: performance of the new hybrids, Forner-Alcaide 5 and Forner-Alcaide 13. J Plant Nutr 34:1–16. https://doi.org/10.1080/01904167.2011.585202

    Article  CAS  Google Scholar 

  • Forner-Giner MA, Rodriguez-Gamir J, Martinez-Alcantara B et al (2014) Performance of Navel orange trees grafted onto two new dwarfing rootstocks (Forner-Alcaide 517 and Forner-Alcaide 418). Sci Hort 179:376–387

    Article  Google Scholar 

  • Froelicher Y, Bassene J, Jedidi-Neji E et al (2007) Induced parthenogenesis in mandarin for haploid production: induction procedures and genetic analysis of plantlets. Plant Cell Rep 26:937–944

    Article  CAS  PubMed  Google Scholar 

  • Froelicher Y, Dambier D, Bassene JB et al (2008) Characterization of microsatellite markers in mandarin orange (Citrus reticulata Blanco). Mol EcolRes 8:119–122

    CAS  Google Scholar 

  • Froelicher Y, Mouhaya W, Bassene JB et al (2011) New universal mitochondrial PCR markers reveal new information on maternal citrus phylogeny. Tree Genet Genom 7:49–61

    Article  Google Scholar 

  • Frost HB, Soost RK (1968) Seed reproduction, development of gametes and embryos. In: Reuther W, Batchelor LD, Webber HJ (eds) Thecitrus industry, vol 2. University of California Press, Berkeley, USA, pp 290–324

    Google Scholar 

  • Gallais A (2003) Quantitative genetics and breeding methods in autopolyploids plants, 2nd edn. INRA, France

    Google Scholar 

  • Gandía M, Conesa A, Ancillo G et al (2007) Transcriptional response of Citrus aurantifolia to infection by Citrus tristeza virus. Virol 367:298–306

    Article  CAS  Google Scholar 

  • Garcia-Lor A, Curk F, Snoussi-Trifa H et al (2012) A nuclear phylogenetic analysis:SNPs, indels and SSRs deliver new insights into the relationships in the ‘true citrus fruit trees’ group (Citrinae, Rutaceae) and the origin of cultivated species. Ann Bot 111:1–19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Lor A, Curk F, Snoussi-Trifa H et al (2013) A nuclear phylogenetic analysis; SNPs, indels and SSRs deliver new insights into the relationships in the “true citrus fruit trees” group (Citrinae, Rutaceae) and the origin of cultivated species. Ann Bot 111:1–19

    Google Scholar 

  • Garcia-Lor A, Luro F, Ollitrault P, Navarro L (2015) Genetic diversity and population structure analysis of mandarin germplasm by nuclear, chloroplastic and mitochondrial markers. Tree Genet Genom 11(6):e123

    Article  Google Scholar 

  • Garcia-Lor A, Luro F, Ollitrault P, Navarro L (2017) Comparative analysis of core collection sampling methods for mandarin germplasm based on molecular and phenotypic data. Ann Appl Biol 171:327–339

    Article  CAS  Google Scholar 

  • Geraci G, Esen A, Soost RK (1975) Triploid progenies from 2x x 2x crosses of Citrus cultivars. J Hered 66:177–178

    Article  Google Scholar 

  • Germana MA, Chiancone B (2001) Gynogenetic haploids of Citrus after in vitro pollination with triploid pollen grains. Plant Cell Tiss Org Cult 66:59–66

    Article  CAS  Google Scholar 

  • Germana MA, Aleza P, Carrera E et al (2013) Cytological and molecular characterization of three gametoclones of Citrus clementina. BMC Plant Biol 13:129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghislain M, Zhang D, Fajardo D et al (1999) Marker-assisted sampling of the cultivated Andean potato Solanum phureja collection using RAPD markers. Genet Res Crop Evol 46(6):547–555

    Article  Google Scholar 

  • Gimeno J, Gadea J, Forment J et al (2009) Shared and novel molecular responses of mandarin to drought. Plant Mol Biol 70(4):403–420

    Article  CAS  PubMed  Google Scholar 

  • Gmitter Jr FG, Grosser JW, Moore GA (1992) Citrus. In: Hammerschlag F, Litz RL (eds) Biotechnology of perennial crops. CAB Intl., Wallingford, Oxon, UK, pp 335–369

    Google Scholar 

  • Gmitter FG, Xiao SY, Huang S et al (1996) A localized linkage map of the Citrus tristeza virus resistance gene region. Theor Appl Genet 92:688–695

    Article  CAS  PubMed  Google Scholar 

  • Gois IB, Borém A, Cristofani-Yaly M et al (2016) Genome wide selection in Citrus breeding. Genet Mol Res 15(4). https://doi.org/10.4238/gmr15048863

  • González-Arnao M, Juárez J, Ortega C (2003) Cryopreservation of ovules and somatic embryos of citrus using the encapsulation-dehydration technique. Cryo Lett 24:85–94

    Google Scholar 

  • Green RM, Vardi A, Galun E (1986) The plastome of Citrus. Physical map, variation among Citrus cultivars and species and comparison with related genera. Theor Appl Genet 72:170–177

    Article  CAS  PubMed  Google Scholar 

  • Grosser JW, An H, Calovic M et al (2010) Production of new allotetraploid and autotetraploid citrus breeding parents: focus on zipperskin mandarins. HortSci 45(8):1160–1163

    Google Scholar 

  • Grosser JW, Gmitter FG Jr (2005) ‘Thinking outside the cell’: Applications of somatic hybridization and cybridization in crop improvement, with citrus as a model. 2004 SIVB Congress Symposium Proceedings. In Vitro Cell Dev Biol Plant 41:220–225

    Google Scholar 

  • Grosser JW, Gmitter FG Jr, Dutt M et al (2015) Highlights of the University of Florida, citrus research and education center’s comprehensive citrus breeding and genetics program. Acta Hort 1065:405–413

    Article  Google Scholar 

  • Gulsen O, Roose ML (2001) Chloroplast and nuclear genome analysis of the parentage of lemons. J Amer Soc Hort Sci 126:210–215

    CAS  Google Scholar 

  • Gulsen O, Uzun A, Canan I et al (2010) A new citrus linkage map based on SRAP, SSR, ISSR, POGP, RGA and RAPD markers. Euphy 173(2):265–277

    Article  CAS  Google Scholar 

  • Hajeri S, Killiny N, El-Mohtar C et al (2014) Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing). J Biotech 176:42–49

    Article  CAS  Google Scholar 

  • Hao CY, Zhang XY, Wang LF et al (2006) Genetic diversity and core collection evaluations in common wheat germplasm from the Northwestern Spring Wheat Region in China. Mol Breed 17:69–77

    Article  CAS  Google Scholar 

  • Hao G, Stover E, Gupta G (2016) Overexpression of a modified plant thionin enhances disease resistance to Citrus canker and Huanglongbing (HLB). Front Plant Sci 7:1078. https://doi.org/10.3389/fpls.2016.01078

    Article  PubMed  PubMed Central  Google Scholar 

  • Henrique FH, Zacarías L, Rodrigo MJ, Latado RR (2016) Sanguinea de mombuca: a novel red-fleshed brazilian orange accumulating lycopene and other colorless carotenes. In: Proceedings of 13th International Citrus Congress Foz do Iguaçu 104

    Google Scholar 

  • Hensz RA (1971) ‘Star Ruby’, a new deep-red-fleshed grapefruit variety with distinct tree characteristics. J Rio Grande Vall Hort Soc 25:54–58

    Google Scholar 

  • Herrero R, Asins MJ, Carbonell EA, Navarro L (1996) Genetic diversity in the orange subfamily Aurantioideae. I. Intraspecifies and intragenus genetic variability. Theor Appl Genet 92:599–609

    Article  CAS  PubMed  Google Scholar 

  • Hidaka T, Omura M, Ugaki M et al (1990) Agrobacterium-mediated transformation and regeneration of Citrus spp. from suspension cells. Japan J Breeding 40:199–207

    Google Scholar 

  • Holdsworth WL, Gazave E, Cheng P et al (2017) A community resource for exploring and utilizing genetic diversity in the USDA pea single plant plus collection. Hort Res 4:17017

    Article  CAS  Google Scholar 

  • Hu J, Zhu J, Xu H (2000) Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theor Appl Genet 101:264–268

    Article  CAS  Google Scholar 

  • Huerta L, Forment J, Gadea J et al (2008) Gene expression analysis in citrus reveals the role of gibberellins on photosynthesis and stress. Plant, Cell Environ 31:1620–1633

    Article  CAS  Google Scholar 

  • IPGRI (1999) Descriptors for Citrus. International Plant Genetic Resources Institute, Rome, Italy

    Google Scholar 

  • Jedidi NE, Kamiri M, Poullet T et al (2015) Efficient haploid production on ‘Wilking’ mandarin by induced gynogenesis. Acta Hort 1065:60

    Google Scholar 

  • Jenderek MM, Reed BM (2017) Cryopreserved storage of clonal germplasm in the USDA National plant germplasm system. Vitro Cell Dev Biol Plant 53(4):299–308

    Article  CAS  Google Scholar 

  • Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE 9(4):e93806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia H, Zhang Y, Orbović V et al (2017) Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to Citrus canker. Plant Biotech J 15(7):817–823

    Article  CAS  Google Scholar 

  • Jiao WB, Huang D, Xing F et al (2013) Genome-wide characterization and expression analysis of genetic variants in sweet orange. Plant J 75:954–964

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kepiro JL, Roose ML (2010) AFLP markers closely linked to a major gene essential for nucellar embryony (apomixis) in Citrus maxima x Poncirus trifoliata. Tree Genet Genome 6:1–11

    Article  Google Scholar 

  • Kijas JMH, Thomas MR, Fowler JCS, Roose ML (1997) Integration of trinucleotide microsatellites into a linkage map of Citrus. Theor Appl Genet 94:701–706

    Article  CAS  Google Scholar 

  • Kobayashi S, Ieda I, Nakatani M (1981) Proceedings of 4th International Citrus Congress 1981. Role of the primordium cell in nucellar embryogenesis in citrus. International Society of Citriculture, Tokyo, pp 44–48

    Google Scholar 

  • Kobayashi S, Uchimiya H (1989) Expression and integration of a foreign gene in orange (Citrus sinensis Osb.) protoplasts by direct DNA transfer. Japan J Genet 64(2):91–97

    Article  Google Scholar 

  • Krueger RR, Bender GS (2015) Screening a core collection of citrus genetic resources for resistance to Fusarium solani. Acta Hort 1065:155–163

    Article  Google Scholar 

  • Krueger RR, Navarro L (2007) Citrus germplasm resources. In: Khan IA (ed) Citrus genetics, breeding and biotechnology. CAB International, Wallingford, UK, pp 45–140

    Chapter  Google Scholar 

  • Krug C (1943) Chromosome number in the subfamily Aurantioideae with special reference to the genus Citrus. Bot Gaz 104:602–611

    Article  Google Scholar 

  • Lapin WK (1937) Investigation on polyploidy in Citrus. USSR All Union Sci Res Inst 1(4):1–68

    Google Scholar 

  • Legua P, Bellver R, Forner JB, Forner-Giner MA (2011) Trifoliata hybrids rootstocks for ‘Lane Late’ navel orange in Spain. Sci Agric 68(5):548–553

    Article  Google Scholar 

  • Lewis CM (2012) Knight J (2012) Introduction to genetic association studies. Cold Spring Harb Protoc 3:297–306. https://doi.org/10.1101/pdb.top068163

    Article  Google Scholar 

  • Li X, Xie R, Lu Z, Zhou Z (2010) The origin of cultivated Citrus as inferred from internal transcribed spacer and chloroplast DNA sequence and amplified fragment length polymorphism fingerprints. J Am Soc Hort Sci 135:341–350

    Google Scholar 

  • Liang G, Xiong G, Guo Q et al (2007) AFLP analysis and the taxonomy of Citrus. Acta Hort 760:137–142

    Article  CAS  Google Scholar 

  • Ling P, Duncan LW, Deng Z et al (2000) Inheritance of citrus nematode resistance and its linkage with molecular markers. Theor Appl Genet 100:1010–1017

    Article  CAS  Google Scholar 

  • Liu YZ, Deng XX (2007) Citrus breeding and genetics in China. Asian Australas J Plant Sci Biotech 1:23–28

    Google Scholar 

  • Lliso I, Forner JB, Talon M (2004) The dwarfing mechanism of the citrus rootstocks F&A 418 and #23 is related to the competition between vegetative and reproductive development. Tree Phys 24:225–232

    Article  Google Scholar 

  • Long JM, Liu Z, Wu XM et al (2016) Genome-scale mRNA and small RNA transcriptomic insights into initiation of citrus apomixis, J Exp Bot 67(19):5743–5756

    Google Scholar 

  • Lopes SA, Frare GF, Camargo LEA et al (2010) Liberibacters associated with orange jasmine in Brazil: Incidence in urban areas and relatedness to citrus liberibacters. Plant Pathol 59:1044–1053. https://doi.org/10.1111/j.1365-3059.2010.02349.x

  • López-García A, Terol J, Tadeo FR et al (2015) Three new cultivars of Clementine: ‘Clemenverd’, ‘Nero’ and ‘Neufina’. Acta Hort 1065:239–244

    Article  Google Scholar 

  • Lotfy S, Luro F, Carreel F et al (2003) Application of cleaved amplified polymorphic sequence method for analysis of cytoplasmic genome among Aurantioideae intergeneric somatic hybrids. J Am Soc Hort Sci 128:225–230

    CAS  Google Scholar 

  • Louzada ES, Grosser JW, Gmitter FG Jr (1993) Intergeneric somatic hybridization of sexually incompatible parents: Citrus sinensis and Atalantia ceylanica. Plant Cell Reports 12:687–690

    Google Scholar 

  • Luro F, Loireux M, Laigret F et al (1994) Genetic mapping of an intergeneric citrus hybrid using molecular markers. Fruits 49:404–408

    CAS  Google Scholar 

  • Luro F, Rist D, Ollitrault P (2001) Evaluation of genetic relationships in Citrus genus by means of sequence tagged microsatellites. Acta Hort 546:237–242

    Article  CAS  Google Scholar 

  • Luro F, Maddy F, Jacquemond C et al (2004) Identification and evaluation of diplogyny in clementine (Citrus clementina) for use in breeding. Acta Hort 663:841–847

    Article  Google Scholar 

  • Luro F, Costantino G, Terol J et al (2008) Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other Citrus species and their effectiveness for genetic mapping. BMC Genom 9:287

    Article  CAS  Google Scholar 

  • Mabberley DJ (1997) A classification for edible Citrus. Telopea 7:167–172

    Article  Google Scholar 

  • Mafra V, Kubo KS, Alves-Ferreira M et al (2012) Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. PLoS ONE 7(2):e31263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marita JM, Rodriguez JM, Nienhuis J (2000) Development of an algorithm identifying maximally diverse core collections. Genet Res Crop Evol 47(5):515–526

    Article  Google Scholar 

  • Martinelli F, Dolan D, Fileccia V et al (2016) Molecular responses to small regulating molecules against Huanglongbing disease. PLoS ONE 11:e0159610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez-Godoy MA, Mauri N, Juarez J et al (2008) A genome-wide 20 K citrus microarray for gene expression analysis. BMC Genom 9(1):318

    Article  CAS  Google Scholar 

  • McCollum TG, Hilf ME, Irey M et al (2016) Susceptibility of sixteen citrus genotypes to ‘Candidatus Liberibacter asiaticus’. Plant Dis 100(6):1080–1086

    Article  PubMed  Google Scholar 

  • McKhann HI, Camilleri C, Bérard A et al (2004) Nested core collections maximizing genetic diversity in Arabidopsis thaliana. Plant J 38:193–202

    Article  CAS  PubMed  Google Scholar 

  • Minamikawa MF, Nonaka K, Kaminuma E et al (2017) Genome-wide association study and genomic prediction in citrus: potential of genomics-assisted breeding for fruit quality traits. Sci Rep 7:4721

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore GA, Jacano CC, Neidigh JL (1992) Agrobacterium–mediated transformation of citrus stem segments and regeneration of transgenic plants. Plant Cell Rep 11:238–242

    Google Scholar 

  • Moore GA, Tozlu I, Weber CA, Guy CL (2000) Mapping quantitative trait loci for salt tolerance and cold tolerance in Citrus grandis (L.) Osb. xPoncirus trifoliata (L.) Raf. hybrid populations. Acta Hort 535:37–45

    Article  CAS  Google Scholar 

  • Mouhaya W, Allario T, Brumos J et al (2010) Sensitivity to high salinity in tetraploid citrus seedlings increases with water availability and correlates with expression of candidate genes. Funct Plant Biol 7(7):674–685

    Article  Google Scholar 

  • Muñoz-Amatriaín M, Cuesta-Marcos A, Endelman JB et al (2014) The USDA barley core collection: genetic diversity, population structure, and potential for genome-wide association studies. PLoS ONE 9:e94688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Navarro L (2005) Necesidades y problemáticas de la mejora sanitaria y genética de los cítricos en España. Phytoma 170:2–5

    Google Scholar 

  • Navarro L, Roistacher C, Murashige T (1975) Improvement of shoot-tip grafting invitro for virus-free citrus. J Am Soc Hort Sci 100:471–479

    Google Scholar 

  • Navarro L, Aleza P, Cuenca J et al (2015) The triploid mandarin breeding program in Spain. Acta Hort 1065:48

    Google Scholar 

  • Nicolosi E (2007) Origin and taxonomy. In: Khan IA (ed) Citrus genetics, breeding and biotechnology. CAB International, Wallingford, UK, pp 19–44

    Chapter  Google Scholar 

  • Nicolosi E, Deng ZN, Gentile A et al (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166

    Article  CAS  Google Scholar 

  • Niñoles R, Aleza P, Castillo MC et al (2015) Ploidy and gene expression in clementine. Acta Hort 1065:76

    Google Scholar 

  • Nishitani C, Hirai N, Komori S et al (2016) Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep 6:31481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oiyama I, Okudai N, Takahara T (1981) Ploidy levels of seedlings obtained from 2x X 4x crosses in citrus. Proc Int Soc Citricult 1:32–34

    Google Scholar 

  • Ollitrault P, Navarro L (2012) Citrus. In: Badenes ML, Byrne DH (eds) Fruit breeding: handbook of plant breeding 8. New York, USA, Springer, pp 623–662

    Chapter  Google Scholar 

  • Ollitrault P, Dambier D, Jacquemont C et al (1996) In vitro rescue and selection of spontaneous triploid by flow cytometry for easy peeler citrus breeding. Proc Int Soc Citricult 1:254–258

    Google Scholar 

  • Ollitrault P, Dambier D, Luro F, Froelicher Y (2008) Ploidy manipulation for breeding seedless triploid citrus. Plant Breed Rev 30:323–352

    Article  CAS  Google Scholar 

  • Ollitrault P, Terol J, Chen C et al (2012a) A reference genetic map of C. clementina Hort. ex Tan.; citrus evolution inferences from comparative mapping. BMC Genom 13:593

    Article  CAS  Google Scholar 

  • Ollitrault P, Terol J, Garcia-Lor A et al (2012b) SNP mining in C. clementina BAC end sequences; transferability in the Citrus genus (Rutaceae), phylogenetic inferences and perspectives for genetic mapping. BMC Genom 13:13

    Article  CAS  Google Scholar 

  • Oueslati A, Salhi-Hannachi A, Luro F et al (2017) Genotyping by sequencing reveals the interspecific C. maxima/ C. reticulata admixture along the genomes of modern citrus varieties of mandarins, tangors, tangelos, orangelos and grapefruits. PLoS ONE 12(10):e0185618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pang XM, Hu CG, Deng XX (2007) Phylogenetic relationships within Citrus and its related genera as inferred from AFLP markers. Genet ResCrop Evol 54:429–436

    Article  CAS  Google Scholar 

  • Park T, Kim J, Hutten RCB et al (2007) Genetic positioning of centromeres using half-tetrad analysis in a 4x-2x cross population of potato. Genet 176(1):85–94

    Article  CAS  Google Scholar 

  • Patel M, Manvar T, Apurwa S et al (2014) Comparative de novo transcriptome analysis and metabolic pathway studies of Citrus paradisi flavedo from naive stage to ripened stage. Mol Biol Rep 41(5):3071–3080

    Article  CAS  PubMed  Google Scholar 

  • Peña L, Cervera M, Juarez J et al (1995) Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Rep 14(10):616–619

    Article  PubMed  Google Scholar 

  • Peña L, Martín-Trillo M, Juárez J et al (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotech 19:263–267

    Article  Google Scholar 

  • Peña L, Cervera M, Fagoaga C et al (2007) Citrus. Biotech Agric For 60:35–50

    Google Scholar 

  • Penjor T, Yamamoto M, Uehara M et al (2013) Phylogenetic relationships of Citrus and its relatives based on matK gene sequences. PLoS ONE 8:e62574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perseguini JMKC, Silva GMB, Rosa JRBF et al (2015) Developing a common bean core collection suitable for association mapping studies. Genet Mol Biol 38:67–78

    Article  PubMed  Google Scholar 

  • Pessoa-Filho M, Rangel P, Ferreira M (2010) Extracting samples of high diversity from thematic collections of large gene banks using a genetic-distance based approach. BMC Plant Biol 10:127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pino Del Carpio D, Basnet R, De Vos R et al (2011) Comparative methods for association studies: a case study on metabolite variation in a Brassica rapa core collection. PLoS ONE 6:e19624. https://doi.org/10.1371/journal.pone.0019624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pons E, Alquézar B, Rodríguez A et al (2014) Metabolic engineering of β-carotene in orange fruit increases its in vivo antioxidant properties. Plant Biotech J 12(1):17–27. https://doi.org/10.1111/pbi.12112

    Article  CAS  Google Scholar 

  • Ramadugu C, Keremane ML, Halbert SE et al (2016) Long term field evaluation reveals HLB resistance in Citrus relatives. Plant Dis 100(9):1858–1869

    Article  PubMed  Google Scholar 

  • Rao ES, Kadirvel P, Symonds RC et al (2012) Using SSR markers to map genetic diversity and population structure of Solanum pimpinellifolium for development of a core collection. Plant Genet Res 10:38–48

    Article  CAS  Google Scholar 

  • Rapisarda P, Bellomo SE, Fabroni S, Russo G (2008) Juice quality of two new mandarin-like hybrids (Citrus clementina Hort. ex Tan x Citrus sinensis L. Osbeck) containing anthocyanins. J Agric Food Chem 56:2074–2078. https://doi.org/10.1021/jf072616e

    Article  PubMed  CAS  Google Scholar 

  • Rawat N, Kumar B, Albrecht U et al (2017) Genome resequencing and transcriptome profiling reveal structural diversity and expression patterns of constitutive disease resistance genes in Huanglongbing-tolerant Poncirus trifoliata and its hybrids. Hort Res 4:17064

    Article  CAS  Google Scholar 

  • Recupero GR, Russo G, Recupero S (2005) New promising citrus triploid hybrids selected from crosses between monoembryonic diploid female ant tetraploid male parents. Hort Sci 40:516–520

    Google Scholar 

  • Ren C, Liu X, Zhang Z et al (2016) CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep 6:32289

    Google Scholar 

  • Riera N, Handique U, Zhang Y et al (2017) Characterization of antimicrobial-producing beneficial bacteria isolated from Huanglongbing escape citrus trees. Front Microbiol 8:2415. https://doi.org/10.3389/fmicb.2017.02415

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigues CM, de Souza AA, Takita MA et al (2013) RNA-Seq analysis of Citrus reticulata in the early stages of Xylella fastidiosa infection reveals auxin-related genes as a defence response. BMC Genom 14:676

    Article  CAS  Google Scholar 

  • Roose MJ (1988) Isozymes and DNA restriction fragment length polymorphisms in citrus breeding and systematics. Proc Int Soc Citricult 1:155–165

    Google Scholar 

  • Roose ML, Williams T (2007) Mandarin variety named Tango. US Plant Patent (2007)/0056064 P1

    Google Scholar 

  • Roose M, Federici C, Mu L et al (2009) Map-based ancestry of sweet orange and other citrus variety groups. In: Gentile A, Tribulato E (eds) Second international citrus biotechnology symposium. Catania, Italy

    Google Scholar 

  • Rouiss H, Cuenca J, Navarro L et al (2017a) Tetraploid citrus progenies arising from FDR and SDR unreduced pollen in 4x X 2x hybridizations. Tree Genet Genom 13:10

    Article  Google Scholar 

  • Rouiss H, Cuenca J, Navarro L et al (2017b) Unreduced megagametophyte production in lemon occurs via three meiotic mechanisms, predominantly second-division restitution. Front Plant Sci 8:1211

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz C, Asins MJ (2003) Comparison between Poncirus and Citrus genetic linkage maps. Theor Appl Genet 106:826–836

    Article  CAS  PubMed  Google Scholar 

  • Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10(6):937–946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruiz C, Paz Breto M, Asins M (2000) A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers. Euphy 112:89–94

    Article  CAS  Google Scholar 

  • Russo M, Bonaccorsi I, Torre G et al (2014) Underestimated sources of flavonoids, limonoids and dietary fibre: availability in lemon’s by-products. J Funct Foods 9:18–26

    Article  CAS  Google Scholar 

  • Savage EM, Gardner FE (1965) The origin and history of troyer and carrizo citranges. Citrus Ind 46:5–7

    Google Scholar 

  • Scora RW (1975) On the history and origin of citrus. Bull Torrey Bot Club 102:369–375

    Article  Google Scholar 

  • Scora RW (1988) Biochemistry, taxonomy and evolution of modern cultivated citrus. Citriculture: proceedings of the sixth international citrus congress, Tel Aviv, Israel, March 6–11

    Google Scholar 

  • Scora RW, Kumamoto J, Soost RK, Nauer EM (1982) Contribution to the origin of the grapefruit Citrus paradisi (Rutaceae). System Bot 7:170–177

    Article  Google Scholar 

  • Shalom L, Samuels S, Zur N et al (2014) Fruit load induces changes in globalgene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds. J Exp Bot 65(12):3029–3044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siviero A, Cristofani M, Furtado EL et al (2006) Identification of QTLs associated with citrus resistance to Phytophthora gummosis. J Appl Genet 47(1):23–28

    Article  PubMed  Google Scholar 

  • Song G, Jia M, Chen K et al (2016) CRISPR/Cas9: a powerful tool for crop genome editing. Crop J 4(2):75–82

    Article  Google Scholar 

  • Soost R (1987) Breeding citrus-genetics and nucellar embryony. In: Abbott AJ, Atkin R (eds) Improving vegetatively propagated crops. Academic Press, London, pp 83–110

    Google Scholar 

  • Spiegel-Roy P, Vardi A (1992) ‘Shani,’ ‘Orah’ and ‘Winola’: three new selections from our breeding program In: Proceedings of the 7th international citrus congress of the international society of citriculture. Acireale, Italy, pp 72–73

    Google Scholar 

  • Starrantino A (1992) Use of triploids for production of seedless cultivars in citrus improvement program. Proc Int Soc Citricult 1:117–121

    Google Scholar 

  • Starrantino A, Recupero GR (1982) Citrus hybrids obtained in vitro from 2x females and 4x male. ProcInt Soc Citricult 1:31–32

    Google Scholar 

  • Stover E, Inch S, Richardson ML, Hall DG (2016) Conventional citrus of some scion/rootstock combinations show field tolerance under high Huanglongbing disease pressure. HortSci 51(2):127–132

    Google Scholar 

  • Sugiyama A, Omura M, Matsumoto H et al (2011) Quantitative trait loci (QTL) analysis of carotenoid content in citrus fruit. J Jpn Soc Hort Sci 80(2):136–144

    Article  Google Scholar 

  • Sugiyama A, Omura M, Shimada T et al (2014) Expression quantitative trait loci analysis of carotenoid metabolism-related genes in citrus. J Jpn Soc Hort Sci 83(1):32–43

    Article  CAS  Google Scholar 

  • Sun Q, Zheng L, Wan-Peng X et al (2014) Transcriptome analysis of blood orange (Citrus sinensis) following fruit bagging treatment by digital gene expression profiling. J Hort Sci Biotech 89(4):397–407

    Article  CAS  Google Scholar 

  • Swingle WT (1943) The botany of Citrus and its wild relatives in the orange subfamily (family Rutaceae, subfamily Aurantioideae). University of California Press, Berkeley, USA

    Google Scholar 

  • Swingle WT, Reece PC (1967) The botany of Citrus and its wild relatives. In: Reuther W, Webber H, Batchelor L (eds) The citrus industry, vol 1. University of California. Berkeley, USA, pp 190–430

    Google Scholar 

  • Tan F, Tu H, Liang W, Long J et al (2015) Comparative metabolic and transcriptional analysis of a doubled diploid and its diploid citrus rootstock (C. junos cv. Ziyang xiangcheng) suggests its potential value for stress resistance improvement. BMC Plant Biol 15:89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka T (1977) Fundamental discussion of Citrus classification. Studia Citrol 14:1–6

    Google Scholar 

  • Tanksley SD, McCouch SR (1998) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277(5329):1063–1066

    Article  Google Scholar 

  • Tavoletti S, Bingham ET, Yandell BS et al (1996)Half tetrad analysis in alfalfa using multiple restriction fragment length polymorphism markers. Proc Natl Acad Sci USA 93(20):10918–10922

    Google Scholar 

  • Terol J, Conesa A, Colmenero JM et al (2007) Analysis of 13000 unique Citrus clusters associated with fruit quality, production and salinity tolerance. BMC Genom 8:31

    Article  CAS  Google Scholar 

  • Terol J, Naranjo MA, Ollitrault P, Talon M (2008) Development of genomic resources for Citrus clementina: characterization of three deep-coverage BAC libraries and analysis of 46,000 BAC end sequences. BMC Genom 9:423

    Article  CAS  Google Scholar 

  • Terol J, Tadeo FR, Ventimilla D, Talon M (2016) An RNA-Seq based reference transcriptome for Citrus. Plant Biotech J 14(3):938–950

    Article  CAS  Google Scholar 

  • Torres AM, Soost RK, Diedenhofen U (1978) Leaf isozymes as genetic markers in Citrus. AmJ Bot 65:869–881

    Article  Google Scholar 

  • Uzun A, Yesiloglu T (2012) Genetic diversity in Citrus. In: Caliskan M (ed) Genetic diversity in plants. InTech. https://doi.org/10.5772/32885

  • van Treuren R, Tchoudinova I, Soest LJM, Hintum TJL (2006) Marker-assisted acquisition and core collection formation: a case study in barley using AFLPs and pedigree data. Genet Resour Crop Evol 53:43–52

    Article  Google Scholar 

  • Hintum TJL van, Brown AHD, Spillane C, Hodgkin T (2000) Core collections of plant genetic resources. IPGRI Technical Bulletin No. 3. International Plant Genetic Resources Institute, Rome, Italy

    Google Scholar 

  • Vardi A, Bleichman S, Aviv D (1990) Genetic transformation of citrus protoplast and regeneration of transgenic plants. Plant Sci 69:199–206

    Google Scholar 

  • Vardi A, Spiegel-Roy P, Elchanati A (1993) Mandarin tree named Mor. US Patent, pp 8378

    Google Scholar 

  • Vardi A, Spiegel-Roy P, Frydman-Shani A et al (2003) Citrus tree named Orri. US patent, pp 13,616 P2

    Google Scholar 

  • Vardi A, Levin I, Carmi N (2008) Induction of seedlessness in Citrus: from classical techniques to emerging biotechnological approaches. J Am Soc Hort Sci 133:117–126

    Google Scholar 

  • Velázquez K, Agüero J, Vives MC et al (2016) Precocious flowering of juvenile citrus induced by a viral vector based on citrus leaf blotch virus: a new tool for genetics and breeding. Plant Biotech J 14(10):1976–1985

    Article  CAS  Google Scholar 

  • Volk G, Bonnart R, Shepherd A et al (2012) Cryopreservation of citrus for long-term conservation. In: XII international citrus congress, Valencia, Spain. S01O02:27

    Google Scholar 

  • Waltz E (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature 532:293

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Xu Y, Zhang S et al (2017) Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat Genet 49:765–772

    Article  PubMed  CAS  Google Scholar 

  • Whelan AI, Lema MA (2015) Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops Food 6(4):253–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams TE, Roose ML (2004) ‘TDE2’ Mandarin hybrid (Shasta Gold(R) Mandarin), ‘TDE3’ Mandarin hybrid (Tahoe Gold(R) Mandarin) and ‘TDE4’ Mandarin hybrid (Yosemite Gold(R) Mandarin): Three new mid and late-season triploid seedless mandarin hybrids from California. In: Proceedings of 10th International Citrus Congress, vol 1, International Society of Citriculture, Agadir, Morocco, 2004, pp 394–398

    Google Scholar 

  • Wu GA, Prochnik S, Jenkins J et al (2014) Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotech 32:656–662

    Article  CAS  Google Scholar 

  • Wu GA, Terol J, Ibáñez V et al (2018) Genomics of the origin and evolution of Citrus. Nature 554(7692):311–316

    Article  PubMed  CAS  Google Scholar 

  • Xiong B, Gu X, Qiu X et al (2017) Variability in CitXET expression and XET activity in Citrus cultivar Huangguogan seedlings with differed degrees of etiolation. PLoS ONE 12(6):e0178973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Q, Chen L, Ruan X et al (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66

    Article  PubMed  CAS  Google Scholar 

  • Yahata M, Harusaki S, Komatsu H et al (2005) Morphological characterization and molecular verification of a fertile haploid pummelo (Citrus grandis Osbeck). J Amer Soc Hort Sci 130:34–40

    Google Scholar 

  • Yahata M, Yasuda K, Nagasawa K et al (2010) Production of haploid plant of ‘Banpeiyu’ pummelo [Citrus maxima (Burm.) Merr.] by pollination with soft X-ray-irradiated pollen. J Japan Soc Hort Sci 79(3):239–245

    Google Scholar 

  • Yan WG, Yong L, Agrama HA et al (2009) Association mapping of stigma and spikelet characteristics in rice (Oryza sativa L.). Mol Breed 24:277–292

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang ZN, Ye XR, Molina J et al (2003) Sequence analysis of a 282-kilobase region surrounding the citrus tristeza virus resistance gene (Ctv) locus in Poncirus trifoliata L. Raf Plant Phys 131:482–492

    Article  CAS  Google Scholar 

  • Yu JM, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotech 17:155–160

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Xu Q, Da X et al (2012) Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis). BMC Genom 13:10

    Article  CAS  Google Scholar 

  • Yu Y, Chen C, Gmitter FG (2016) QTL mapping of mandarin (Citrus reticulata) fruit characters using high-throughput SNP markers. Tree Genet Genom 12:77

    Article  Google Scholar 

  • Zhang S, Shi Q, Albrecht U et al (2017) Comparative transcriptome analysis during early fruit development between three seedy citrus genotypes and their seedless mutants. Hort Res 4:17041

    Article  Google Scholar 

  • Zheng BB, Wu XM, Ge XX et al (2012) Comparative transcript profiling of a male sterile cybrid pummelo and its fertile type revealed altered gene expression related to flower development. PLoS ONE 7(8):e43758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Aleza .

Editor information

Editors and Affiliations

Appendix 1: Research Institutes and Online Resources

Appendix 1: Research Institutes and Online Resources

Institution

Contact information and website

Instituto Valenciano de Investigaciones Agrarias (IVIA). Spain

CV-315 km 10,7 46113 Moncada, Valencia (Spain)

www.ivia.es

Institut National de la Recherche Agronomique/La Recherche Agronomique pour le Développement (INRA/CIRAD). France

20230, San-Giuliano (France)

www.inra.fr

www.cirad.fr

Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA). Italy

Corso Savoia 190 95024Acireale(Italy)

http://sito.entecra.it

Agricultural Research Organization (ARO)—Volcani Center. Israel

Derech HaMaccabim 68, Rishon LeTsiyon, (Israel)

www.agri.gov.il

Citrus Research and Education Center (CREC). USA

700 Experiment Station Rd. Lake Alfred, FL 33850 (USA)

http://www.crec.ifas.ufl.edu

Agricultural Experiment Station-Citrus Research Center. University of California, Riverside. USA

900 University Avenue, Riverside, CA 92521 (USA)

www.citrusvariety.ucr.edu

Centro de Citricultura ‘Sylvio Moreira’. Brazil

Rodovia Anhangüera, Km 158, Cordeirópolis, SP (Brasil)

http://ccsm.br

Brazilian Agricultural Research Corporation (EMBRAPA)

Parque Estação Biológica, Brasília, DF (Brazil)

https://www.embrapa.br

Instituto Nacional de Tecnología Agropecuaria (INTA). Argentina

Av. Rivadavia 1439 (C1033AAE)

Buenos Aires (Argentina)

https://inta.gob.ar

Instituto Nacional de Investigación Agropecuaria (INIA) EE Salto Grande. Uruguay

Camino al Terrible, Salto (Uruguay)

www.inia.uy

Citrus Research Institute (CRI). Chinese Academy of Agricultural Sciences. China

Xiema, Beibei, Chongqing (China)

http://www.southfruit.com.cn

Institute of Citrus Science (ICS). HZAU. China

Huazhong Agricultural University, Wuhan 430070 (China)

http://ics.hzau.edu.cn

NARO Institute of Fruit Tree Science.Citrus Research Station. Japan

485-6 Okitsunaka-cho, Shimizu, Shizuoka City, Shizuoka 424-0284 (Japan)

www.naro.affrc.go.jp

Commonwealth Scientific and Industrial Research Organization (CSIRO)

Gate 13, Kintore Avenue University of AdelaideAdelaide SA 5000 (Australia)

www.csiro.au

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuenca, J., Garcia-Lor, A., Navarro, L., Aleza, P. (2018). Citrus Genetics and Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Fruits. Springer, Cham. https://doi.org/10.1007/978-3-319-91944-7_11

Download citation

Publish with us

Policies and ethics