Skip to main content

Coronary Hemodynamics

  • Chapter
  • First Online:
Snapshots of Hemodynamics

Abstract

The relation between mean coronary flow and mean perfusion pressure is under the influence of autonomic, neural and hormonal control. Autoregulation causes the rather constant flow for the physiological range of pressures, and the change in flow with cardiac metabolism. Autonomic coronary flow regulation consists of three mechanisms: metabolic, myogenic and endothelium mediated vasoactivity. The so-called instantaneous pressure-flow relations are obtained in diastole to avoid the effect of cardiac muscle contraction, and describe the state of the coronary bed. Cardiac contraction reduces coronary arterial inflow and augments venous outflow in systole, the ‘intramyocardial pump’. This effect results from three mechanisms: The direct effect of increased muscle stiffening (varying elastance), the indirect effect of increased ventricular pressure producing an intramyocardial (interstitial) pressure in the ventricular wall, and the thickening of the muscle during shortening contractions at the expense of vascular lumen. Cardiac contraction is the main reason why the subendocardial layers are most prone to ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman JIE, Spaan JAE. Pressure-flow relations in the coronary circulation. Physiol Rev. 1990;70:331–90.

    Article  CAS  Google Scholar 

  2. Spaan JA. Coronary blood flow. Dordrecht: Kluwer; 1991.

    Book  Google Scholar 

  3. Westerhof N, Boer C, Lamberts RR, Sipkema P. Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev. 2006;86:1263–308.

    Article  CAS  PubMed  Google Scholar 

  4. Dankelman J, Spaan JAE, van der Ploeg CPB, Vergroesen I. Dynamic response of the coronary circulation to a rapid change in perfusion in the anaesthetised goat. J Physiol Lond. 1989;419:703–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vergroesen I, Noble MIM, Wieringa PA, Spaan JAE. Quantification of O2 consumption and arterial pressure as independent determinants of coronary flow. Am J Phys. 1987;252:H545–53.

    CAS  Google Scholar 

  6. Drake-Holland AJ, Laird JD, Noble MIM, Spaan JAE, Vergroesen I. Oxygen and coronary vascular resistance during autoregulation and metabolic vasodilation in the dog. J Physiol. 1984;348:285–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kuo L, Davis MJ, Chilian WM. Longitudinal gradients for endothelium-dependent and -independent vascular responses in the coronary microcirculation. Circulation. 1995;92:518–25.

    Article  CAS  PubMed  Google Scholar 

  8. Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88:1009–86.

    Article  CAS  PubMed  Google Scholar 

  9. Bellamy RF. Diastolic coronary artery pressure-flow relations in the dog. Circ Res. 1978;43:92–101.

    Article  CAS  PubMed  Google Scholar 

  10. Van Dijk LC, Krams R, Sipkema P, Westerhof N. Changes in coronary pressure-flow relation after transition from blood to Tyrode. Am J Phys. 1988;255:H476–82.

    Google Scholar 

  11. Sherman IA. Interfacial tension effects in the microvasculature. Microvasc Res. 1981;22:296–307.

    Article  CAS  PubMed  Google Scholar 

  12. Sipkema P, Westerhof N. Mechanics of a thin walled collapsible microtube. Ann Biomed Eng. 1989;17:203–17.

    Article  CAS  PubMed  Google Scholar 

  13. Spaan JA. Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ Res. 1985;56:293–309.

    Article  CAS  PubMed  Google Scholar 

  14. Gregg DE, Green HD. Registration and interpretation of normal phasic inflow into the left coronary artery by an improved differential manometric method. Am J Phys. 1940;130:114–25.

    Google Scholar 

  15. Krams R, van Haelst ACTA, Sipkema P, Westerhof N. Can coronary systolic-diastolic flow differences be predicted by left ventricular pressure of by time-varying intramyocardial elastance? Basic Res Cardiol. 1989;84:149–59.

    Article  CAS  PubMed  Google Scholar 

  16. Downey JM, Kirk ES. Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res. 1975;36:753–60.

    Article  CAS  PubMed  Google Scholar 

  17. Spaan JA, Breuls NPW, Laird JD. Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res. 1981;49:584–93.

    Article  CAS  PubMed  Google Scholar 

  18. Vis MA, Bovendeerd PH, Sipkema P, Westerhof N. Effect of ventricular contraction, pressure, and wall stretch on vessels at different locations in the wall. Am J Phys. 1997;272:H2963–75.

    CAS  Google Scholar 

  19. Sipkema P, Takkenberg JJM, Zeeuwe PEM, Westerhof N. Left coronary pressure-flow relations of the beating and arrested rabbit heart at different ventricular volumes. Cardiovasc Res. 1998;40:88–95.

    Article  CAS  PubMed  Google Scholar 

  20. Mihailescu LS, Abel FL. Intramyocardial pressure gradients in working and nonworking isolated cat hearts. Am J Phys. 1994;266:H1233–41.

    CAS  Google Scholar 

  21. Westerhof N. Physiological hypothesis. Intramyocardial pressure. Basic Res Cardiol. 1990;85:105–19.

    Article  CAS  PubMed  Google Scholar 

  22. Yada T, Hiramatsu O, Kimura A, Goto M, Ogasawara Y, Tsujioka K, et al. In vivo observation of subendocardial microvessels in the beating porcine heart using a needle-probe videomicroscope with a CCD camera. Circ Res. 1993;72:939–46.

    Article  CAS  PubMed  Google Scholar 

  23. Vis MA, Sipkema P, Westerhof N. Compression of intramyocardial arterioles during cardiac contraction is attenuated by accompanying venules. Am J Phys. 1997;273:H1002–11.

    Google Scholar 

  24. Chilian WM. Microvascular pressures and resistances in the left ventricular subendocardium and subepicardium. Circ Res. 1991;69:561–70.

    Article  CAS  PubMed  Google Scholar 

  25. Bassingthwaighte JB, King RB, Roger SA. Fractal nature of regional myocardial blood flow heterogeneity. Circ Res. 1989;65:578–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Danad I, Raijmakers PG, Harms HJ, Heymans MW, van Royen N, Lubberink M, et al. Impact of anatomical and functional severity of coronary atherosclerotic plaques on the transmural perfusion gradient: a [15O]H2O PET study. Eur Heart. 2014;35:2094–105.

    Article  Google Scholar 

  27. Lamberts RR, Van Rijen MH, Sipkema P, Fransen P, Sys SU, Westerhof N. Coronary perfusion and muscle lengthening increase cardiac contraction: different stretch-triggered mechanisms. Am J Physiol Heart Circ Physiol. 2002;283:H1515–22.

    Article  CAS  PubMed  Google Scholar 

  28. Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev. 2003;83:59–115.

    Article  CAS  PubMed  Google Scholar 

  29. Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–71. Review.

    Article  PubMed  Google Scholar 

  30. Ten Velden GHM, Westerhof N, Elzinga G. Left ventricular energetics: heat loss and temperature distribution in the canine myocardium. Circ Res. 1982;50:63–73.

    Article  PubMed  Google Scholar 

  31. Hoffman JIE, Buckberg JD. Myocardial supply:demand ratio – a critical review. Am J Cardiol. 1978;41:327–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Westerhof, N., Stergiopulos, N., Noble, M.I.M., Westerhof, B.E. (2019). Coronary Hemodynamics. In: Snapshots of Hemodynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-91932-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91932-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91931-7

  • Online ISBN: 978-3-319-91932-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics