Skip to main content

Cardiac Muscle Mechanics

  • Chapter
  • First Online:
Snapshots of Hemodynamics

Abstract

Relations between force and length in the relaxed state, diastole, and active state, systole, are important parameters standing at the basis of diastolic and systolic heart function. Calcium entry and removal in and out the muscle cell play a major role in muscle force. The difference between the systolic and diastolic force is developed force. Force is expressed relative to cross-sectional area of the muscle and called tension (stress would be a better term). The force-velocity relation, shows that velocity of contraction decreases when force increases. Stress relates to pressure (Chap. 9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fukuda N, Granzier HL. Titin/connectin-based modulation of the Frank-Starling mechanism of the heart. J Muscle Res Cell Motil. 2005;26:319–23. Review.

    Article  CAS  PubMed  Google Scholar 

  2. Kentish JC, ter Keurs HEDJ, Ricciardi L, Bucx JJJ, Noble MIM. Cardiac muscle mechanics: comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Circ Res. 1986;58:755–68.

    Article  CAS  PubMed  Google Scholar 

  3. Huisman RM, Elzinga G, Westerhof N, Sipkema P. Comparison of models used to calculate left ventricular wall force. Cardiovasc Res. 1980;14:142–53.

    Article  CAS  PubMed  Google Scholar 

  4. Daniels M, Noble MIM, ter Keurs HEDJ, Wohlfart B. Force and velocity of sarcomere shortening in rat cardiac muscle: relationship of force, sarcomere length, Ca++ and time. J Physiol. 1984;355:367–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van der Velden J, Klein LJ, van der Bijl M, Huybregts MA, Stooker W, Witkop J, et al. Isometric tension development and its calcium sensitivity in skinned myocyte-sized preparations from different regions of the human heart. Cardiovasc Res. 1999;42:706–19.

    Article  PubMed  Google Scholar 

  6. Herzog W, Lee EJ, Rassier DE. Residual force enhancement in skeletal muscle. J Physiol. 2007;578:613–5. Holohan SJ, Marston SB. IEEE Proc Nanobiotechnol 2005;152:113–20

    Article  Google Scholar 

  7. Liu X, Pollack GH. Stepwise sliding of single actin and myosin filaments. Biophys J. 2004;86:353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kishino A, Yanagida T. Force measurements by micromanipulation of a single actin filament by glass needles. Nature. 1988;334(6177):74–6.

    Article  CAS  PubMed  Google Scholar 

  9. Holohan SJ, Marston SB. Force-velocity relationship of single actin filament interacting with immobilised myosin measured by electromagnetic technique. IEEE Proc Nanobiotechnol. 2005;152:113–20.

    Article  CAS  Google Scholar 

  10. Sun YB, Lou F, Irving M. Calcium- and myosin-dependent changes in troponin structure during activation of heart muscle. J Physiol. 2009;587(Pt 1):155–63.

    Article  CAS  PubMed  Google Scholar 

  11. Granzier HL, Irving TC. Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J. 1995;68:1027–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Drake-Holland AJ, Lee JA, Hynd J, Clarke SB, Noble MI. Beneficial effect of the calcium-sensitizing drug EMD 57033 in a canine model of dilated heart failure. Clin Sci (Lond). 1997;93:213–8.

    Article  CAS  Google Scholar 

  13. Golob M, Moss RL, Chesler NC. Cardiac tissue structure, properties, and performance: a materials science perspective. Ann Biomed Eng. 2014;42:2003–13.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zile MR, Baicu CF, Ikonomidis JS, Stroud RE, Nietert PJ, Bradshaw AD, et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation. 2015;131:1247–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Westerhof, N., Stergiopulos, N., Noble, M.I.M., Westerhof, B.E. (2019). Cardiac Muscle Mechanics. In: Snapshots of Hemodynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-91932-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91932-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91931-7

  • Online ISBN: 978-3-319-91932-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics