Skip to main content

Wettability

  • Chapter
  • First Online:
Metal Matrix Composites

Abstract

This chapter describes the main fundamental aspects considered during the wetting process. The wettability behavior of molten metals on a solid substrate has become the fundamental aspect in the manufacture of metal-ceramic composites, since in many stages of the process, liquid metal is in contact with a solid ceramic. The degree of wettability is measured from the contact angle (θ) between the molten metal and the ceramic. There are two different types: (1) reactive systems and (2) nonreactive systems. In addition, the main methods to measure wettability of a solid by a liquid metal at high temperature are described, as well as the suitable engineering methods used to improve wettability are addressed. An efficient approach is to apply coatings to the ceramic reinforcement. Another method is the addition of alloying elements that reduce the surface tension and improve wettability. In this chapter the authors analyzed wetting of TiC by pure Al, Mg, and Cu, as well as some binary Al-Mg and Al-Cu alloys. Additionally, some commercial Al alloys (1010, 2024, 6061, and 7075) were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gibbs JW (1878) On the equilibrium of heterogeneous substances. Trans Conn Acad 3:343–524

    Google Scholar 

  2. Jhonson RE (1959) Conflicts between Gibbsian thermodynamics and recent treatments of interfacial energies in solid-liquid-vapor. J Phys Chem 63:1655–1658

    Article  Google Scholar 

  3. Naidich JV (1981) In: Cadenhead DA, Danielli JF (eds) Progress in surface and membrane science, vol 14. Academic Press, Cambridge, pp 353–484

    Google Scholar 

  4. Gallois BM (1997) Overview: wetting in nonreactive liquid metal-oxide systems. JOM 49(6):48–51

    Article  CAS  Google Scholar 

  5. Kaptay G (1996) Interfacial phenomena during melt processing of ceramic particle-reinforced metal matrix composites. Mater Sci Forum 215–216:459–466

    Article  Google Scholar 

  6. Ruhle M (1996) Structure and composition of metal/ceramic interfaces. J Eur Ceram Soc 16(3):353–365

    Article  Google Scholar 

  7. Savov L, Heller HP, Janke D (1997) Wettability of solids by molten metals and alloys. Metall 51(9):475–486

    CAS  Google Scholar 

  8. Dalgleish BJ, Saiz E, Tomsia AP, Cannon RM, Ritchie RO (1994) Interface formation and strength in ceramic/metal systems. Scr Metall Mater 31(8):1109–1114

    Article  CAS  Google Scholar 

  9. Delannay F, Froyen L, Deruyttere A (1987) The wetting of solids by molten metals and its relation to the preparation of metal-matrix composites. J Mater Sci 22(1):1–16

    Article  CAS  Google Scholar 

  10. Nowok JW (1994) Analysis of atomic diffusion in liquid metals at melting temperatures in capillary like Media-2. Acta Metall Mater 42(12):4025–4028

    Article  CAS  Google Scholar 

  11. Eustathopoulus N (1998) Dynamics of wetting in reactive metal/ceramic systems. Mater Sci Eng 249A(1):176–183

    Article  Google Scholar 

  12. Li JG (1994) Wetting of ceramic materials by liquid Si, Al and other metallic melts containing Ti and other reactive elements. Rev Ceram Int 20(6):391–412

    Article  CAS  Google Scholar 

  13. Aksay IA, Hoge CE, Pask JA (1974) Wetting under chemical equilibrium and non-equilibrium conditions. J Phys Chem 78(12):1178–1183

    Article  CAS  Google Scholar 

  14. Naidich YV, Taranets NY (1988) Wettability of aluminum nitride by tin-aluminum melts. J Mater Sci 33:393–397

    Google Scholar 

  15. Samsonov GV, Panasyuk AD, Kozina GK (1968) Wetting of refractory carbides with liquid metals. Porosk Metall 71(11):42–48

    Google Scholar 

  16. Muscat D, Drew RAL (1994) Modeling the infiltration kinetics of molten aluminum into porous titanium carbide. Metall Mater Trans 25A(11):2357–2370

    Article  CAS  Google Scholar 

  17. Muscat D, Harris RL, Drew RAL (1994) The effect of pore size on the infiltration kinetics of aluminum in TiC preforms. Acta Metall Mater 42(12):4155–4163

    Article  CAS  Google Scholar 

  18. Banerji A, Rohatgi PK, Reif W (1984) Role of the wettability in the preparation of metal-matrix composites (a review). Metall 38:656–661

    CAS  Google Scholar 

  19. León CA, Drew RAL (2000) Preparation of nickel-coated powders as precursors to reinforce MMC’s. J Mater Sci 35(19):4763–4768

    Article  Google Scholar 

  20. León CA, Bourassa AM, Drew RAL (2000) Processing of aluminum matrix composites by electroless plating and melt infiltration. Adv Technol Mater Mater Process J 2(2):96–106

    Google Scholar 

  21. Hatch JE (1984) ALUMINUM properties and physical metallurgy. ASM International, Geauga

    Google Scholar 

  22. Pai BC, Ramani G, Pillai RM, Satyanarayana KG (1995) Review: Role of magnesium in cast aluminum alloy matrix composites. J Mater Sci 30:1903–1911

    Article  CAS  Google Scholar 

  23. Mcevoy AJ, Williams RH, Higginbotham IG (1976) Metal/non-metal interfaces. The wetting of magnesium oxide by aluminum and other metals. J Mater Sci 11:297–302

    Article  CAS  Google Scholar 

  24. Brewer L, Searcy AW (1951) The gaseous species of the Al-Al2O3 system. J Am Chem Soc 73:5308–5314

    Article  CAS  Google Scholar 

  25. Brennan JJ, Pask JA (1968) Effect of nature of surfaces on wetting of saphire by liquid aluminum. J Am Ceram Soc 51(10):569–573

    Article  CAS  Google Scholar 

  26. Porter RF, Schissel P, Inghram MG (1955) A mass spectrometric study of gaseous species in the Al-Al2O3 system. J Chem Phys 23(2):339–342

    Article  CAS  Google Scholar 

  27. Rao YK (1985) Stoichiometry and thermodynamics of metallurgical processes. CBLS Publishers, Marietta

    Google Scholar 

  28. López Morelos VH (2000) Mojabilidad del TiC por el Aluminio y sus Aleaciones. Thesis of Master degree, IIM-UMSNH, Morelia Mich., México

    Google Scholar 

  29. Madeleno U, Liu H, Shinoda T, Mishima Y, Suzuki T (1990) Compatibility between alumina fibres and aluminum. J Mater Sci 25:3273–3280

    Article  CAS  Google Scholar 

  30. Lijun Z, Jimbo W, Jiting Q, Qiu N (1989) An investigation on wetting behavior and interfacial reactions of aluminum α-Alumina system. In: Lin RY et al (eds) Proceeding of interfaces in metal-ceramics composites. TMS, Warrendale, pp 213–226

    Google Scholar 

  31. Pech-Canul MI, Katz RN, Makhlouf MM (2000) Optimum parameters for wetting silicon carbide by aluminum alloys. Metall Mater Trans 31A:565–573

    Article  CAS  Google Scholar 

  32. Pech-Canul MI, Katz RN, Makhlouf MM (2000) The combined role of nitrogen and magnesium in wetting SiC by aluminum alloys. In: Memoria XXII Congreso Internacional de Metalurgia y Materiales, Saltillo Coah., México, pp 232–241

    Google Scholar 

  33. García-Cordovilla C, Louis E, Pamies A (1986) The surface tension of liquid pure aluminium and aluminium-magnesium alloy. J Mater Sci 31(21):2787–2792

    Article  Google Scholar 

  34. Goicoechea J, García-Cordovilla C, Louis E, Pamies A (1992) Surface tension of binary and ternary aluminum alloys of the systems Al-Si-Mg and Al-Zn-Mg. J Mater Sci 27:5247–5252

    Article  CAS  Google Scholar 

  35. Narciso J, Alonso A, Pamies A, García-Cordovilla C, Louis E (1994) Wettability of binary and ternary alloys of the system Al-Si-Mg with SiC particulates. Scr Metall Mater 31(11):1495–1500

    Article  CAS  Google Scholar 

  36. Manning CR, Gurganus TB (1969) Wetting of binary aluminum alloys in contact with Be, B4C, and graphite. J Am Ceram Soc 52(3):115–118

    Article  CAS  Google Scholar 

  37. Pai BC, Ray S, Prabhakar KV, Rohatgi PK (1976) Fabrication of aluminum-alumina/magnesia/particulate composites in foundries using magnesium additions to the melts. Mater Sci Eng 24:31–44

    Article  CAS  Google Scholar 

  38. Dean WA (1967) In: Horn V (ed) Aluminum, vol 1. ASM Pub, Metals Park, Ohio, p 163

    Google Scholar 

  39. Suresh S, Mortensen A, Needleman A (1993) Fundamentals of metal matrix composites. Butterworth-Heinemann, Boston

    Google Scholar 

  40. Banerji A, Rohatgi K (1982) Cast aluminum alloy containing dispersions of TiO2 and ZrO2 particles. J Mater Sci 17(2):335–342

    Article  CAS  Google Scholar 

  41. Laurent V, Chatain D, Eustathopoulos N (1991) Wettability of SiO2 and oxidized SiC by aluminum. Mater Sci Eng 135:89–94

    Article  Google Scholar 

  42. Bardal A (1992) Wettability and interfacial reaction products in the AlSiMg surface-oxidized SiC system. Mater Sci Eng 159A:119–125

    Article  Google Scholar 

  43. Eustathopoulos N, Drevet B (1998) Determination of the nature of metal-oxide interfacial interactions from Sessile drop data. Mater Sci Eng A 249(1):176–183

    Article  Google Scholar 

  44. Eustathopoulos N, Joud JC, Desre P, Hicter JM (1974) The wetting of carbon by aluminum and aluminum alloys. J Mater Sci 9(8):1233–1242

    Article  CAS  Google Scholar 

  45. Pique D, Coudurier L, Eustathopoulos N (1981) Adsorption du cuivre a l'interface entre Fe solide et Ag liquide a 1100 °C. Scr Metall 15(2):165–170

    Article  CAS  Google Scholar 

  46. Humenik M, Kingery WD (1954) Metal-ceramic interactions III: surface tension and wettability of metal-ceramic systems. J Am Ceram Soc 37(1):18–23

    Article  CAS  Google Scholar 

  47. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994

    Article  CAS  Google Scholar 

  48. Nakae H, Inui R, Hirata Y, Saito H (1998) Effects of surface roughness on wettability. Acta Metall Mater 46(7):2313–2318

    Article  CAS  Google Scholar 

  49. Eustathopoulos N (1998) Dynamics of wetting in reactive metal/ceramics systems. Acta Mater 46(7):2319–2327

    CAS  Google Scholar 

  50. Dezellus O, Eustathopoulos N (2010) Fundamental issues of reactive wetting by liquid metals. J Mater Sci 45:4256–4264

    Article  CAS  Google Scholar 

  51. Dezellus O, Eustathopoulos N (1999) The role of Van der Waals interactions on wetting and adhesion in metal/carbon systems. Scr Mater 40(11):1283–1288

    Article  CAS  Google Scholar 

  52. Dezellus O, Hodaj F, Eustathopoulos N (2002) Chemical reaction-limited spreading: the triple line velocity versus contact angle relation. Acta Mater 50:4741–4753

    Article  CAS  Google Scholar 

  53. Dezellus O, Hodaj F, Eustathopoulos N (2003) Progress in modelling of chemical-reaction limited wetting. J Eur Ceram Soc 23(15):2797–2803

    Article  CAS  Google Scholar 

  54. Dezellus O, Hodaj F, Mortensen A, Eustathopoulos N (2001) Diffusion-limited reactive wetting. Spreading of Cu-Sn-Ti alloys on vitreous carbon. Scr Mater 44:2543–2549

    Article  CAS  Google Scholar 

  55. Mortensen A, Drevet B, Eustathopoulos N (1997) Kinetic of diffusion-limited spreading of sessile drops in reactive wetting. Scr Mater 36(6):645–651

    Article  CAS  Google Scholar 

  56. Frage N, Froumin N, Dariel MP (2002) Wetting of TiC by non-reactive liquid metals. Acta Mater 50(2):237–245

    Article  CAS  Google Scholar 

  57. Asthana R, Sobezak N (2000) Wettability, spreading and interfacial phenomena in high temperature coatings. JOM 52(1):1–19

    Article  Google Scholar 

  58. Starov VM, Velarde MG, Radke CJ (2007) Wetting and spreading dynamics, vol 138. CRC Press, Boca Raton

    Google Scholar 

  59. Saiz E, Tomsia AP, Cannon RM (1998) Ridging effects on wetting and spreading of liquids on solids. Acta Mater 46(7):2349–2361

    Article  CAS  Google Scholar 

  60. Lam CNC, Wu R, Lia D, Hair ML, Neumann AW (2002) Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis. Adv Colloid Interface Sci 96:169–191

    Article  CAS  Google Scholar 

  61. Eick JD, Good RJ, Neumann AW (1975) Thermodynamics of contact angles. II. Rough solid surfaces. J Colloid Interface Sci 53(2):235–248

    Article  Google Scholar 

  62. Oliver JF, Huh C, Mason SG (1980) An experimental study of some effects of solid surface roughness on wetting. Colloids Surf 1:79

    Article  CAS  Google Scholar 

  63. Oliver JF, Mason SG (1980) Liquid spreading on rough metal surfaces. J Mater Sci 15(2):431–437

    Article  CAS  Google Scholar 

  64. Neumann AW, Good RJ (1972) Thermodynamics of contact angles. I. Heterogeneous solid surfaces. J Colloid Interface Sci 38:341–358

    Article  CAS  Google Scholar 

  65. Marmur A (1997) Line tension and the intrinsic contact angle in solid–liquid–fluid systems. J Colloid Interface Sci 186(2):462–466

    Article  CAS  Google Scholar 

  66. Decker EL, Garoff S (1997) Contact line structure and dynamics on surfaces with contact angle hysteresis. Langmuir 13(23):6321–6332

    Article  CAS  Google Scholar 

  67. Fadeev AY, McCarthy TJ (1999) Binary monolayer mixtures: modification of nanopores in silicon supported tris (trimethylsiloxy) silyl monolayers. Langmuir 15:7238–7243

    Article  CAS  Google Scholar 

  68. Fadeev AY, McCarthy TJ (1999) Trialkylsilane monolayers covalently attached to silicon surfaces: wettability studies indicating that molecular topography contributes to contact angle hysteresis. Langmuir 15:3759–3766

    Article  CAS  Google Scholar 

  69. Youngblood JP, McCarthy TJ (1999) Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly (tetrafluoroethylene) using radio frequency plasma. Macromolecules 32:6800–6806

    Article  CAS  Google Scholar 

  70. Sedev RV, Petrov JG, Neumann AW (1996) Effect of swelling of a polymer surface on advancing and receding contact angles. J Colloid Interface Sci 180:36–42

    Article  CAS  Google Scholar 

  71. Lam CNC, Wu R, Li D, Hair ML, Neumann AW (2002) Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis. J Colloid Interface Sci 96:169–191

    Article  CAS  Google Scholar 

  72. Jha AK, Prasad SV, Upadhyaya GS (1990) In: Bhagat RB (ed) Metal & ceramic matrix composites. CRC Press, Boca Raton, pp 127–135

    Google Scholar 

  73. Rhee SK (1970) Wetting of ceramics by liquid aluminum. J Am Ceram Soc 53(7):386–389

    Article  CAS  Google Scholar 

  74. Kononenko VY, Shvejkin GP, Sukhman AL, Lomovtsev VI, Mitrofanov BV (1976) Chemical compatibility of titanium carbide with aluminum, gallium, and indium melts. Poroshk Metall 9:48–52

    Google Scholar 

  75. Frumin N, Frage N, Polak M, Dariel MP (1997) Wettability and phase formation in the TiCx/Al system. Scr Mater 37(8):1263–1267

    Article  CAS  Google Scholar 

  76. Asthana R, Tewari SN (1993) Interfacial and capillary phenomena in solidification processing of metal-matrix composites. Compos Manuf 4(1):3–25

    Article  CAS  Google Scholar 

  77. Kaptay G, Bader E, Bolyan L (2000) Interfacial forces and energies relevant to production of metal matrix composites. Mater Sci Forum 329–330:151–156

    Article  Google Scholar 

  78. Contreras A, López VH, León CA, Drew RAL, Bedolla E (2001) The relation between wetting and infiltration behavior in the Al-1010/TiC and Al-2024/TiC systems. Adv Technol Mater Mater Process 3(1):33–40

    Google Scholar 

  79. Ferro AC, Derby B (1995) Wetting behavior in the Al-Si/SiC system: interface reactions and solubility effects. Acta Metall Mater 43(8):3061–3073

    Article  CAS  Google Scholar 

  80. Lin Q, Shen P, Yang L, Jin S, Jiang Q (2011) Wetting of TiC by molten Al at 1123–1323 K. Acta Mater 59:1898–1911

    Article  CAS  Google Scholar 

  81. Xiao P, Derby B (1996) Wetting of titanium nitride and titanium carbide by liquid metals. Acta Mater 44(1):307–314

    Article  CAS  Google Scholar 

  82. Schuster CJ, Nowotny H, Vaccaro C (1980) The ternary systems: Cr-Al-C, V-Al-C, and Ti-C-Al and the behavior of H-phases (M2AlC). J Solid State Chem 32:213–219

    Article  CAS  Google Scholar 

  83. Iseki T, Kameda T, Maruyama T (1983) Some properties of sintered Al4C3. J Mater Sci Lett 2:675–676

    Article  CAS  Google Scholar 

  84. Banerji A, Reif W (1986) Development of Al-Ti-C grain refiners containing TiC. Metall Trans 17A:2127–2137

    Article  CAS  Google Scholar 

  85. Fine ME, Conley JG (1990) On the free energy of formation of TiC and Al4C3. Metall Trans 21A:2609–2610

    Article  CAS  Google Scholar 

  86. Yokokawa H, Sakai N, Kawada T, Dakiya M (1991) Chemical potential diagram of Al-Ti-C System: Al4C3 formation on TiC formed in Al-Ti liquids containing carbon. Metall Trans 22A:3075–3076

    Article  CAS  Google Scholar 

  87. Contreras A, Leon CA, Drew RAL, Bedolla E (2003) Wettability and spreading kinetics of Al and Mg on TiC. Scr Mater 48:1625–1630

    Article  CAS  Google Scholar 

  88. Contreras A (2002) Fabricación y estudio cinético de materiales compuestos de matriz metálica Al-Cux y Al-Mgx reforzados con TiC: Mojabilidad e infiltración. Thesis, Universidad Nacional Autónoma de México

    Google Scholar 

  89. Laurent V, Chatain D, Chatillon C, Eustathopoulos N (1998) Wettability of monocrystalline alumina by aluminum between its melting point and 1273K. Acta Metall 36(7):1797–1803

    Article  Google Scholar 

  90. Brennan JJ, Pask JA (1968) Effect of composition on glass-metal interface reactions and adherence. J Am Ceram Soc 56(2):58–62

    Article  Google Scholar 

  91. Keene BJ (1993) Review of data for the surface tension of pure metals. Int Mater Rev 38(4):157–192

    Article  CAS  Google Scholar 

  92. Muscat D (1993) Titanium carbide/Aluminum composites by melt infiltration. Thesis, Department of Mining and Metallurgical Engineering, McGill University, pp 48–51

    Google Scholar 

  93. Kumar G, Narayan K (2007) Review of non-reactive and reactive wetting of liquids on surfaces. Adv Colloid Interface Sci 133:61–89

    Article  CAS  Google Scholar 

  94. Toy C, Scott WD (1997) Wetting and spreading of molten aluminium against AlN surfaces. J Mater Sci 32:3243–3248

    Article  CAS  Google Scholar 

  95. Narayan K, Fernandes P (2007) Determination of wetting behavior, spread activation energy, and quench severity of bioquenchants. Metall Mater Trans B 38:631–640

    Article  CAS  Google Scholar 

  96. Contreras A (2007) Wetting of TiC by Al–Cu alloys and interfacial characterization. J Colloid Interface Sci 311:159–170

    Article  CAS  Google Scholar 

  97. Li L, Wong YS, Fuh JYH, Lu L (2001) Effect of TiC in copper–tungsten electrodes on EDM performance. J Mater Process Technol 113:563–567

    Article  CAS  Google Scholar 

  98. Leong CC, Lu L, Fuh JYH, Wong YS (2002) In-situ formation of copper matrix composites by laser sintering. Mater Sci Eng A 338:81–88

    Article  Google Scholar 

  99. Akhtar F, Javid-Askari S, Ali-Shah K, Du X, Guo S (2009) Microstructure, mechanical properties, electrical conductivity and wear behavior of high volume TiC reinforced Cu-matrix composites. Mater Charact 60:327–336

    Article  CAS  Google Scholar 

  100. Froumin N, Frage N, Polak M, Dariel MP (2000) Wetting phenomena in the TiC/(Cu-Al) system. Acta Mater 48:1435–1441

    Article  CAS  Google Scholar 

  101. Mortimer DA, Nicholas M (1973) The wetting of carbon and carbides by copper alloys. J Mater Sci 8:640–648

    Article  CAS  Google Scholar 

  102. Zarrinfar N, Kennedy AR, Shipway PH (2004) Reaction synthesis of Cu-TiCx master-alloys for the production of copper-based composites. Scr Mater 50:949–952

    Article  CAS  Google Scholar 

  103. Zarrinfar N, Shipway PH, Kennedy AR, Saidi A (2002) Carbide stoichiometry in TiCx and Cu-TiCx produced by self-propagating high-temperature synthesis. Scr Mater 46:121–126

    Article  CAS  Google Scholar 

  104. Contreras A, Albiter A, Bedolla E, Perez R (2004) Processing and characterization of Al-Cu and Al-Mg base composites reinforced with TiC. Adv Eng Mater 6:767–775

    Article  CAS  Google Scholar 

  105. Shoutens JE (1992) Some theoretical considerations of the surface tension of liquid metals for metal matrix composites. J Mater Sci 24:2681–2686

    Article  Google Scholar 

  106. Aguilar EA, Leon CA, Contreras A, Lopez VH, Drew RAL, Bedolla E (2002) Wettability and phase formation in TiC/Al-alloys assemblies. Compos Part A 33:1425–1428

    Article  Google Scholar 

  107. Lloyd DJ (1994) Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev 39:1–24

    Article  CAS  Google Scholar 

  108. McLeod AD, Gabryel CM (1992) Kinetic of the grow spinel MgAl2O4 on alumina particulate in aluminum alloys containing magnesium. Metall Trans A 23:1279–1283

    Article  Google Scholar 

  109. Saiz E, Tomsia AP (1998) Kinetics of metal-ceramic composite formation by reactive penetration of silicates with molten aluminum. J Am Ceram Soc 81(9):2381–2393

    Article  CAS  Google Scholar 

  110. Yosomiya R, Morimoto K, Nakajima A, Ikada Y, Suzuki T (eds) (1990) Adhesion and bonding in composites. Marcel Dekker, New York, p 23

    Google Scholar 

  111. Eustathopoulos N, Nicholas MG, Drevet B (1999) In: Cahn RW (ed) Wettability at high temperatures, Pergamon materials series, vol 3. Elsevier Science & Technology, Oxford, p 45

    Google Scholar 

  112. Contreras A, Bedolla E, Perez R (2004) Interfacial phenomena in wettability of TiC by Al–Mg alloys. Acta Mater 52:985–994

    Article  CAS  Google Scholar 

  113. Yoshimi N, Nakae H, Fujii H (1990) A new approach to estimating wetting in reaction system. Mater Trans JIM 31(2):141–147

    Article  Google Scholar 

  114. Nakae H, Fujii H, Sato K (1992) Reactive wetting of ceramics by liquid metals. Mater Trans JIM 33:400–406

    Article  CAS  Google Scholar 

  115. Fujii H, Nakae H (1990) Three wetting phases in the chemically reactive MgO/Al system. ISIJ Int 30(12):1114–1118

    Article  CAS  Google Scholar 

  116. Contreras A, Salazar M, León CA, Drew RAL, Bedolla E (2000) Kinetic study of the infiltration of aluminum alloys into TiC. Mater Manuf Process 15(2):163–182

    Article  CAS  Google Scholar 

  117. Contreras A, Albiter A, Perez R (2004) Microstructural properties of the Al–Mgx/TiC composites obtained by infiltration techniques. J Phys Condens Matter 16:S2241–S2249

    Article  CAS  Google Scholar 

  118. Nukami T, Flemings M (1995) In situ synthesis of TiC particulate-reinforced aluminum matrix composites. Metall Mater Trans 26A:1877–1884

    Article  CAS  Google Scholar 

  119. Yang B, Chen G, Zhang J (2001) Effect of Ti/C additions on the formation of Al3Ti of in situ TiC/Al composites. Mater Des 22:645–650

    Article  CAS  Google Scholar 

  120. Rajan TPD, Pillai RM, Pai BC (1998) Review: Reinforcement coatings and interfaces in aluminium metal matrix composites. J Mater Sci 33:3491–3503

    Article  CAS  Google Scholar 

  121. Asthana R (1998) Reinforced cast metal part II evolution of the interface. J Mater Sci 33(8):1959–1980

    Article  CAS  Google Scholar 

  122. Leon CA, Lopez VH, Bedolla E, Drew RAL (2002) Wettability of TiC by commercial aluminum alloys. J Mater Sci 37:3509–3514

    Article  CAS  Google Scholar 

  123. Lumley RN, Sercombe TB, Schaffer GB (1999) Surface oxide and the role of magnesium during the sintering of aluminum. Metall Mater Trans 30A:457–463

    Article  CAS  Google Scholar 

  124. Orkasov TA, Ponezhev MK, Sozaev VA, Shidov KT (1996) An investigation of the temperature dependence of the surface tension of aluminum alloys. High Temp 34:490–492

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Contreras Cuevas, A., Bedolla Becerril, E., Martínez, M.S., Lemus Ruiz, J. (2018). Wettability. In: Metal Matrix Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-91854-9_2

Download citation

Publish with us

Policies and ethics