Skip to main content

The B-Side of the Immune Response

  • Chapter
  • First Online:
  • 801 Accesses

Part of the book series: Rare Diseases of the Immune System ((RDIS))

Abstract

B lymphocytes have long been, and still are, known to play a crucial role in orchestrating the humoral immune responses. This concept arises from their ability to take advantage of interactions with the other immune cells to become antibody-producing plasma cells or memory B cells. This chapter focuses on the mechanisms by which B cells encounter, manage, and present antigens to T cells, to finally integrate both humoral and cellular immune responses. The intrinsic ability of B cells to actively interact with the other immune cells makes them the leading units of the immune system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. von Andrian UH, Mempel TR. Homing and cellular traffic in lymph nodes. Nat Rev Immunol. 2003;3(11):867–78.

    Article  CAS  Google Scholar 

  2. Schröttner P, Leick M, Burger M. The role of chemokines in B cell chronic lymphocytic leukaemia: pathophysiological aspects and clinical impact. Ann Hematol. 2010;89(5):437–46.

    Article  PubMed  CAS  Google Scholar 

  3. Cyster JG, Ansel KM, Reif K, Ekland EH, Hyman PL, Tang HL, et al. Follicular stromal cells and lymphocyte homing to follicles. Immunol Rev. 2000;176:181–93.

    Article  CAS  PubMed  Google Scholar 

  4. Roozendaal R, Mempel TR, Pitcher LA, Gonzalez SF, Verschoor A, Mebius RE, et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity. 2009;30(2):264–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gretz JE, Anderson AO, Shaw S. Cords, channels, corridors and conduits: critical architectural elements facilitating cell interactions in the lymph node cortex. Immunol Rev. 1997;156:11–24.

    Article  CAS  PubMed  Google Scholar 

  6. Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt DP, et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity. 2005;22(1):19–29.

    Article  CAS  PubMed  Google Scholar 

  7. González SF, Degn SE, Pitcher LA, Woodruff M, Heesters BA, Carroll MC. Trafficking of B cell antigen in lymph nodes. Annu Rev Immunol. 2011;29:215–33.

    Article  PubMed  CAS  Google Scholar 

  8. Schmidt EE, MacDonald IC, Groom AC. Comparative aspects of splenic microcirculatory pathways in mammals: the region bordering the white pulp. Scanning Microsc. 1993;7(2):613–28.

    CAS  PubMed  Google Scholar 

  9. Cyster JG. B cell follicles and antigen encounters of the third kind. Nat Immunol. 2010;11(11):989–96.

    Article  CAS  PubMed  Google Scholar 

  10. Gonzalez SF, Pitcher LA, Mempel T, Schuerpf F, Carroll MC. B cell acquisition of antigen in vivo. Curr Opin Immunol. 2009;21(3):251–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Martin F, Oliver AM, Kearney JF. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity. 2001;14(5):617–29.

    Article  CAS  PubMed  Google Scholar 

  12. Puga I, Cols M, Barra CM, He B, Cassis L, Gentile M, et al. B cell–helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol. 2011;13(2):170–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Pape KA, Catron DM, Itano AA, Jenkins MK. The humoral immune response is initiated in lymph nodes by B cells that acquire soluble antigen directly in the follicles. Immunity. 2007;26(4):491–502.

    Article  CAS  PubMed  Google Scholar 

  14. Clark SL. The reticulum of lymph nodes in mice studied with the electron microscope. Am J Anat. 1962;110(3):217–57.

    Article  PubMed  Google Scholar 

  15. Farr AG, Cho Y, De Bruyn PP. The structure of the sinus wall of the lymph node relative to its endocytic properties and transmural cell passage. Am J Anat. 1980;157(3):265–84.

    Article  CAS  PubMed  Google Scholar 

  16. van Ewijk W, Brekelmans PJ, Jacobs R, Wisse E. Lymphoid microenvironments in the thymus and lymph node. Scanning Microsc. 1988;2(4):2129–40.

    PubMed  Google Scholar 

  17. Anderson AO, Anderson ND. Studies on the structure and permeability of the microvasculature in normal rat lymph nodes. Am J Pathol. 1975;80(3):387–418.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Batista FD, Harwood NE. The who, how and where of antigen presentation to B cells. Nat Rev Immunol. 2009;9(1):15–27.

    Article  CAS  PubMed  Google Scholar 

  19. Carrasco YR, Batista FD. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity. 2007;27(1):160–71.

    Article  CAS  PubMed  Google Scholar 

  20. Phan TG, Grigorova I, Okada T, Cyster JG. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat Immunol. 2007;8(9):992–1000.

    Article  CAS  PubMed  Google Scholar 

  21. Junt T, Moseman EA, Iannacone M, Massberg S, Lang PA, Boes M, et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature. 2007;450(7166):110–4.

    Article  CAS  PubMed  Google Scholar 

  22. Suzuki K, Grigorova I, Phan TG, Kelly LM, Cyster JG. Visualizing B cell capture of cognate antigen from follicular dendritic cells. J Exp Med. 2009;206(7):1485–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gonzalez SF, Lukacs-Kornek V, Kuligowski MP, Pitcher LA, Degn SE, Kim Y-A, et al. Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nat Immunol. 2010;11(5):427–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ferguson JS, Weis JJ, Martin JL, Schlesinger LS. Complement protein C3 binding to Mycobacterium tuberculosis is initiated by the classical pathway in human bronchoalveolar lavage fluid. Infect Immun. 2004;72(5):2564–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heesters BA, van der Poel CE, Das A, Carroll MC. Antigen presentation to B cells. Trends Immunol. 2016;37(12):844–54.

    Article  CAS  PubMed  Google Scholar 

  26. Cinamon G, Zachariah MA, Lam OM, Foss FW, Cyster JC, Cyster JG. Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat Immunol. 2008;9(1):54–62.

    Article  CAS  PubMed  Google Scholar 

  27. Hoogeboom R, Tolar P. Molecular mechanisms of B cell antigen gathering and endocytosis. Cham: Springer; 2015. p. 45–63.

    Google Scholar 

  28. Hobeika E, Maity PC, Jumaa H. Control of B cell responsiveness by isotype and structural elements of the antigen receptor. Trends Immunol. 2016;37(5):310–20.

    Article  CAS  PubMed  Google Scholar 

  29. Kraus M, Alimzhanov MB, Rajewsky N, Rajewsky K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igα/β heterodimer. Cell. 2004;117(6):787–800.

    Article  CAS  PubMed  Google Scholar 

  30. Treanor B, Depoil D, Bruckbauer A, Batista FD. Dynamic cortical actin remodeling by ERM proteins controls BCR microcluster organization and integrity. J Exp Med. 2011;208(5):1055–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang J, Reth M. Oligomeric organization of the B-cell antigen receptor on resting cells. Nature. 2010;467(7314):465–9.

    Article  CAS  PubMed  Google Scholar 

  32. Treanor B, Depoil D, Gonzalez-Granja A, Barral P, Weber M, Dushek O, et al. The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity. 2010;32(2):187–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tolar P, Sohn HW, Pierce SK. The initiation of antigen-induced B cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nat Immunol. 2005;6(11):1168–76.

    Article  CAS  PubMed  Google Scholar 

  34. Schamel WW, Reth M. Monomeric and oligomeric complexes of the B cell antigen receptor. Immunity. 2000;13(1):5–14.

    Article  CAS  PubMed  Google Scholar 

  35. Basu R, Huse M. Mechanical communication at the immunological synapse. Trends Cell Biol. 2017;27(4):241–54.

    Article  PubMed  Google Scholar 

  36. Batista FD, Iber D, Neuberger MS. B cells acquire antigen from target cells after synapse formation. Nature. 2001;411(6836):489–94.

    Article  CAS  PubMed  Google Scholar 

  37. Yuseff MI, Lankar D, Lennon-Duménil AM. Dynamics of membrane trafficking downstream of B and T cell receptor engagement: impact on immune synapses. Traffic. 2009;10(6):629–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tolar P, Sohn HW, Liu W, Pierce SK. The molecular assembly and organization of signaling active B-cell receptor oligomers. Immunol Rev. 2009;232:34–41.

    Article  CAS  PubMed  Google Scholar 

  39. Avalos AM, Bilate AM, Witte MD, Tai AK, He J, Frushicheva MP, et al. Monovalent engagement of the BCR activates ovalbumin-specific transnuclear B cells. J Exp Med. 2014;211(2):365–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Avalos AM, Ploegh HL. Early BCR events and antigen capture, processing, and loading on MHC class II on B cells. Front Immunol. 2014;5:1–5.

    Article  CAS  Google Scholar 

  41. Lanzavecchia A. Receptor-mediated antigen uptake and its effect on antigen presentation to class II-restricted T lymphocytes. Annu Rev Immunol. 1990;8(c):773–93.

    Article  CAS  PubMed  Google Scholar 

  42. Fleire SJ, Goldman JP, Carrasco YR, Weber M, Bray D, Batista FD. B cell ligand discrimination through a spreading and contraction response. Science. 2006;312(5774):738–41.

    Article  CAS  PubMed  Google Scholar 

  43. Depoil D, Fleire S, Treanor BL, Weber M, Harwood NE, Marchbank KL, et al. CD19 is essential for B cell activation by promoting B cell receptor–antigen microcluster formation in response to membrane-bound ligand. Nat Immunol. 2008;9(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  44. Wang J, Sohn H, Sun G, Milner JD, Pierce SK. The autoinhibitory C-terminal SH2 domain of phospholipase C-2 stabilizes B cell receptor signalosome assembly. Sci Signal. 2014;7(343):ra89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Xu S, Huo J, Chew W-K, Hikida M, Kurosaki T, Lam K-P. Phospholipase Cgamma2 dosage is critical for B cell development in the absence of adaptor protein BLNK. J Immunol. 2006;176(8):4690–8.

    Article  CAS  PubMed  Google Scholar 

  46. Scharenberg AM, Humphries LA, Rawlings DJ. Calcium signalling and cell-fate choice in B cells. Nat Rev Immunol. 2007;7(10):778–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yuseff M-I, Pierobon P, Reversat A, Lennon-Duménil A-M. How B cells capture, process and present antigens: a crucial role for cell polarity. Nat Rev Immunol. 2013;13(7):475–86.

    Article  CAS  PubMed  Google Scholar 

  48. Freeman SA, Lei V, Dang-Lawson M, Mizuno K, Roskelley CD, Gold MR. Cofilin-mediated F-actin severing is regulated by the Rap GTPase and controls the cytoskeletal dynamics that drive lymphocyte spreading and BCR microcluster formation. J Immunol. 2011;187(11):5887–900.

    Article  CAS  PubMed  Google Scholar 

  49. Pore D, Parameswaran N, Matsui K, Stone MB, Saotome I, McClatchey AI, et al. Ezrin tunes the magnitude of humoral immunity. J Immunol. 2013;191(8):4048–58.

    Article  CAS  PubMed  Google Scholar 

  50. Arana E, Vehlow A, Harwood NE, Vigorito E, Henderson R, Turner M, et al. Activation of the small GTPase Rac2 via the B cell receptor regulates B cell adhesion and immunological-synapse formation. Immunity. 2008;28(1):88–99.

    Article  CAS  PubMed  Google Scholar 

  51. Burbage M, Keppler SJ, Gasparrini F, Martínez-Martín N, Gaya M, Feest C, et al. Cdc42 is a key regulator of B cell differentiation and is required for antiviral humoral immunity. J Exp Med. 2015;212(1):53–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Weber M, Treanor B, Depoil D, Shinohara H, Harwood NE, Hikida M, et al. Phospholipase C-gamma2 and Vav cooperate within signaling microclusters to propagate B cell spreading in response to membrane-bound antigen. J Exp Med. 2008;205(4):853–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carrasco YR, Fleire SJ, Cameron T, Dustin ML, Batista FD. LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation. Immunity. 2004;20(5):589–99.

    Article  CAS  PubMed  Google Scholar 

  54. Carrasco YR, Batista FD. B-cell activation by membrane-bound antigens is facilitated by the interaction of VLA-4 with VCAM-1. EMBO J. 2006;25(4):889–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lin KBL, Freeman SA, Zabetian S, Brugger H, Weber M, Lei V, et al. The Rap GTPases regulate B cell morphology, immune-synapse formation, and signaling by particulate B cell receptor ligands. Immunity. 2008;28(1):75–87.

    Article  CAS  PubMed  Google Scholar 

  56. Saez de Guinoa J, Barrio L, Carrasco YR. Vinculin arrests motile B cells by stabilizing integrin clustering at the immune synapse. J Immunol. 2013;191(5):2742–51.

    Article  CAS  PubMed  Google Scholar 

  57. Randall KL, Lambe T, Johnson AL, Johnson A, Treanor B, Kucharska E, et al. Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nat Immunol. 2009;10(12):1283–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Reversat A, Yuseff M-I, Lankar D, Malbec O, Obino D, Maurin M, et al. Polarity protein Par3 controls B-cell receptor dynamics and antigen extraction at the immune synapse. Mol Biol Cell. 2015;26(7):1273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ritter AT, Asano Y, Lippincott-Schwartz J, Griffiths GM, Stinchcombe JC, Dieckmann NMg, et al. Actin depletion initiates events leading to granule secretion at the immunological synapse. Immunity. 2015;42(5):864–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM. Centrosome polarization delivers secretory granules to the immunological synapse. Nature. 2006;443(7110):462–5.

    Article  CAS  PubMed  Google Scholar 

  61. Bertrand F, Esquerre M, Petit A-E, Rodrigues M, Duchez S, Delon J, et al. Activation of the ancestral polarity regulator protein kinase C at the immunological synapse drives polarization of Th cell secretory machinery toward APCs. J Immunol. 2010;185(5):2887–94.

    Article  CAS  PubMed  Google Scholar 

  62. Huse M. Microtubule-organizing center polarity and the immunological synapse: protein kinase C and beyond. Front Immunol. 2012;3:235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stowers L, Yelon D, Berg LJ, Chant J. Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42. Cell Biol. 1995;92:5027–31.

    CAS  Google Scholar 

  64. Yuseff M-I, Reversat A, Lankar D, Diaz J, Fanget I, Pierobon P, et al. Polarized secretion of lysosomes at the B cell synapse couples antigen extraction to processing and presentation. Immunity. 2011;35(3):361–74.

    Article  CAS  PubMed  Google Scholar 

  65. Wang JC, Lee JY-J, Christian S, Dang-Lawson M, Pritchard C, Freeman SA, et al. The Rap1-cofilin pathway coordinates actin reorganization and MTOC polarization at the B-cell immune synapse. J Cell Sci. 2017;130(6):1094–109.

    CAS  PubMed  Google Scholar 

  66. Schnyder T, Castello A, Feest C, Harwood NE, Oellerich T, Urlaub H, et al. B cell receptor-mediated antigen gathering requires ubiquitin ligase Cbl and adaptors Grb2 and Dok-3 to recruit dynein to the signaling microcluster. Immunity. 2011;34(6):905–18.

    Article  CAS  PubMed  Google Scholar 

  67. Combs J, Kim SJ, Tan S, Ligon LA, Holzbaur ELF, Kuhn J, et al. Recruitment of dynein to the Jurkat immunological synapse. Proc Natl Acad Sci U S A. 2006;103(40):14883–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Martín-Cófreces NB, Robles-Valero J, Cabrero JR, Mittelbrunn M, Gordón-Alonso M, Sung CH, et al. MTOC translocation modulates IS formation and controls sustained T cell signaling. J Cell Biol. 2008;182(5):951–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Quann EJ, Merino E, Furuta T, Huse M. Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells. Nat Immunol. 2009;10(6):627–35.

    Article  CAS  PubMed  Google Scholar 

  70. Yi J. Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage. J Cell Biol. 2013;202(5):779–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Seeley-Fallen MK, Liu LJ, Shapiro MR, Onabajo OO, Palaniyandi S, Zhu X, et al. Actin-binding protein 1 links B-cell antigen receptors to negative signaling pathways. Proc Natl Acad Sci U S A. 2014;111(27):9881–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu C, Bai X, Wu J, Sharma S, Upadhyaya A, Dahlberg CIM, et al. N-WASP is essential for the negative regulation of B cell receptor Signaling. PLoS Biol. 2013;11(11):e1001704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Sáez de Guinoa J, Barrio L, Mellado M, Carrasco YR. CXCL13/CXCR5 signaling enhances BCR-triggered B-cell activation by shaping cell dynamics. Blood. 2011;118(6):1560–9.

    Article  PubMed  CAS  Google Scholar 

  74. Natkanski E, Lee W-Y, Mistry B, Casal A, Molloy JE, Tolar P. B cells use mechanical energy to discriminate antigen affinities. Science. 2013;340(6140):1587–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nowosad CR, Spillane KM, Tolar P. Germinal center B cells recognize antigen through a specialized immune synapse architecture. Nat Immunol. 2016;17:870–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yuseff MI, Lennon-Duménil AM. B cells use conserved polarity cues to regulate their antigen processing and presentation functions. Front Immunol. 2015;6:251.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol. 2015;15(4):203–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cocucci E, Aguet F, Boulant S, Kirchhausen T. The first five seconds in the life of a clathrin-coated pit. Cell. 2012;150(3):495–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yewdell JW. Not such a dismal science: the economics of protein synthesis, folding, degradation and antigen processing. Trends Cell Biol. 2001;11(7):294–7.

    Article  CAS  PubMed  Google Scholar 

  80. Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol. 2012;12(8):557–69.

    Article  CAS  PubMed  Google Scholar 

  81. Bakke O, Dobberstein B. MHC class II-associated invariant chain contains a sorting signal for endosomal compartments. Cell. 1990;63(4):707–16.

    Article  CAS  PubMed  Google Scholar 

  82. McCormick PJ, Martina JA, Bonifacino JS. Involvement of clathrin and AP-2 in the trafficking of MHC class II molecules to antigen-processing compartments. Proc Natl Acad Sci U S A. 2005;102(22):7910–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Neefjes J. CIIV, MIIC and other compartments for MHC class II loading. Eur J Immunol. 1999;29(5):1421–5.

    Article  CAS  PubMed  Google Scholar 

  84. Manoury B, Mazzeo D, Li DN, Billson J, Loak K, Benaroch P, et al. Asparagine endopeptidase can initiate the removal of the MHC class II invariant chain chaperone. Immunity. 2003;18(4):489–98.

    Article  CAS  PubMed  Google Scholar 

  85. Lennon-Duménil A-M, Bakker AH, Maehr R, Fiebiger E, Overkleeft HS, Rosemblatt M, et al. Analysis of protease activity in live antigen-presenting cells shows regulation of the phagosomal proteolytic contents during dendritic cell activation. J Exp Med. 2002;196(4):529–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Denzin LK, Cresswell P. HLA-DM induces CLIP dissociation from MHC class II alpha beta dimers and facilitates peptide loading. Cell. 1995;82(1):155–65.

    Article  CAS  PubMed  Google Scholar 

  87. Guce AI, Mortimer SE, Yoon T, Painter CA, Jiang W, Mellins ED, et al. HLA-DO acts as a substrate mimic to inhibit HLA-DM by a competitive mechanism. Nat Struct Mol Biol. 2013;20(1):90–8.

    Article  CAS  PubMed  Google Scholar 

  88. Denzin LK, Hammond C, Cresswell P. HLA-DM interactions with intermediates in HLA-DR maturation and a role for HLA-DM in stabilizing empty HLA-DR molecules. J Exp Med. 1996;184(6):2153–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pashine A, Busch R, Belmares MP, Munning JN, Doebele RC, Buckingham M, et al. Interaction of HLA-DR with an acidic face of HLA-DM disrupts sequence-dependent interactions with peptides. Immunity. 2003;19(2):183–92.

    Article  CAS  PubMed  Google Scholar 

  90. Bryant P, Ploegh H. Class II MHC peptide loading by the professionals. Curr Opin Immunol. 2004;16(1):96–102.

    Article  CAS  PubMed  Google Scholar 

  91. Jiang W, Strohman MJ, Somasundaram S, Ayyangar S, Hou T, Wang N, et al. pH-susceptibility of HLA-DO tunes DO/DM ratios to regulate HLA-DM catalytic activity. Sci Rep. 2015;5(1):17333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kropshofer H, Arndt SO, Moldenhauer G, Hämmerling GJ, Vogt AB. HLA-DM acts as a molecular chaperone and rescues empty HLA-DR molecules at lysosomal pH. Immunity. 1997;6(3):293–302.

    Article  CAS  PubMed  Google Scholar 

  93. Sloan VS, Cameron P, Porter G, Gammon M, Amaya M, Mellins E, et al. Mediation by HLA-DM of dissociation of peptides from HLA-DR. Nature. 1995;375(6534):802–6.

    Article  CAS  PubMed  Google Scholar 

  94. Yin L, Maben ZJ, Becerra A, Stern LJ. Evaluating the role of HLA-DM in MHC class II–peptide association reactions. J Immunol. 2015;195(2):706–16.

    Article  CAS  PubMed  Google Scholar 

  95. Denzin LK, Sant’Angelo DB, Hammond C, Surman MJ, Cresswell P. Negative regulation by HLA-DO of MHC class II-restricted antigen processing. Science. 1997;278(5335):106–9.

    Article  CAS  PubMed  Google Scholar 

  96. Chen X, Laur O, Kambayashi T, Li S, Bray RA, Weber DA, et al. Regulated expression of human histocompatibility leukocyte antigen (HLA)-DO during antigen-dependent and antigen-independent phases of B cell development. J Exp Med. 2002;195(8):1053–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mellins ED, Stern LJ. HLA-DM and HLA-DO, key regulators of MHC-II processing and presentation. Curr Opin Immunol. 2014;26:115–22.

    Article  CAS  PubMed  Google Scholar 

  98. Craiu A, Akopian T, Goldberg A, Rock KL. Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide. Proc Natl Acad Sci U S A. 1997;94(20):10850–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Koegl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU, Jentsch S. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell. 1999;96(5):635–44.

    Article  CAS  PubMed  Google Scholar 

  100. Arora S, Lapinski PE, Raghavan M. Use of chimeric proteins to investigate the role of transporter associated with antigen processing (TAP) structural domains in peptide binding and translocation. Proc Natl Acad Sci U S A. 2001;98(13):7241–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Higgins CF, Linton KJ. The ATP switch model for ABC transporters. Nat Struct Mol Biol. 2004;11(10):918–26.

    Article  CAS  PubMed  Google Scholar 

  102. Diedrich G, Bangia N, Pan M, Cresswell P. A role for calnexin in the assembly of the MHC class I loading complex in the endoplasmic reticulum. J Immunol. 2001;166(3):1703–9.

    Article  CAS  PubMed  Google Scholar 

  103. Hughes EA, Cresswell P. The thiol oxidoreductase ERp57 is a component of the MHC class I peptide-loading complex. Curr Biol. 1998;8(12):709–12.

    Article  CAS  PubMed  Google Scholar 

  104. Sadasivan B, Lehner PJ, Ortmann B, Spies T, Cresswell P. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity. 1996;5(2):103–14.

    Article  CAS  PubMed  Google Scholar 

  105. Momburg F, Tan P. Tapasin-the keystone of the loading complex optimizing peptide binding by MHC class I molecules in the endoplasmic reticulum. Mol Immunol. 2002;39(3–4):217–33.

    Article  CAS  PubMed  Google Scholar 

  106. Leone P, Shin E-C, Perosa F, Vacca A, Dammacco F, Racanelli V. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst. 2013;105(16):1172–87.

    Article  CAS  PubMed  Google Scholar 

  107. Victora GD, Nussenzweig MC. Germinal centers. Annu Rev Immunol. 2012;30(1):429–57.

    Article  CAS  PubMed  Google Scholar 

  108. Cyster JG. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol. 2005;23:127–59.

    Article  CAS  PubMed  Google Scholar 

  109. Okada T, Cyster JG. B cell migration and interactions in the early phase of antibody responses. Curr Opin Immunol. 2006;18(3):278–85.

    Article  CAS  PubMed  Google Scholar 

  110. Kerfoot SM, Yaari G, Patel JR, Johnson KL, Gonzalez DG, Kleinstein SH, et al. Germinal center B cell and T follicular helper cell development initiates in the interfollicular zone. Immunity. 2011;34(6):947–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Green JA, Cyster JG. S1PR2 links germinal center confinement and growth regulation. Immunol Rev. 2012;247(1):36–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Mempel TR, Henrickson SE, von Andrian UH. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature. 2004;427(6970):154–9.

    Article  CAS  PubMed  Google Scholar 

  113. Dustin ML, Choudhuri K. Signaling and polarized communication across the T cell immunological synapse. Annu Rev Cell Dev Biol. 2016;32(1):303–25.

    Article  CAS  PubMed  Google Scholar 

  114. Kupfer H, Monks CR, Kupfer A. Small splenic B cells that bind to antigen-specific T helper (Th) cells and face the site of cytokine production in the Th cells selectively proliferate: immunofluorescence microscopic studies of Th-B antigen-presenting cell interactions. J Exp Med. 1994;179(5):1507–15.

    Article  CAS  PubMed  Google Scholar 

  115. Kupfer A, Mosmann TR, Kupfer H. Polarized expression of cytokines in cell conjugates of helper T cells and splenic B cells. Proc Natl Acad Sci U S A. 1991;88(3):775–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gardell JL, Parker DC. CD40L is transferred to antigen-presenting B cells during delivery of T-cell help. Eur J Immunol. 2017;47(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  117. Griffiths GM, Tsun A, Stinchcombe JC. The immunological synapse: a focal point for endocytosis and exocytosis. J Cell Biol. 2010;189(3):399–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Klein U, Dalla-Favera R. Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol. 2008;8(1):22–33.

    Article  CAS  PubMed  Google Scholar 

  119. Bannard O, McGowan SJ, Ersching J, Ishido S, Victora GD, Shin J-S, et al. Ubiquitin-mediated fluctuations in MHC class II facilitate efficient germinal center B cell responses. J Exp Med. 2016;213(6):993–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. The generation of antibody-secreting plasma cells. Nat Rev Immunol. 2015;15(3):160–71.

    Article  CAS  PubMed  Google Scholar 

  121. McHeyzer-Williams LJ, Milpied PJ, Okitsu SL, McHeyzer-Williams MG. Class-switched memory B cells remodel BCRs within secondary germinal centers. Nat Immunol. 2015;16(3):296–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kurosaki T, Kometani K, Ise W. Memory B cells. Nat Rev Immunol. 2015;15(3):149–59.

    Article  CAS  PubMed  Google Scholar 

  123. Stinchcombe JC, Griffiths GM. Secretory mechanisms in cell-mediated cytotoxicity. Annu Rev Cell Dev Biol. 2007;23(1):495–517.

    Article  CAS  PubMed  Google Scholar 

  124. Randall TD, Carragher DM, Rangel-Moreno J, Randall T. Development of secondary lymphoid organs. Annu Rev Immunol. 2008;26:627–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kellermayer Z, Vojkovics D, Balogh P. Innate lymphoid cells and their stromal microenvironments. Immunol Lett. 2017;189:3–9.

    Article  CAS  PubMed  Google Scholar 

  126. Blonska M, Agarwal NK, Vega F. Shaping of the tumor microenvironment: stromal cells and vessels. Semin Cancer Biol. 2015;34:3–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ten Hacken E, Burger JA. Microenvironment interactions and B-cell receptor signaling in chronic lymphocytic leukemia: implications for disease pathogenesis and treatment. Biochim Biophys Acta. 2015;1863(3):401–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Kipps TJ, Stevenson FK, Wu CJ, Croce CM, Packham G, Wierda WG, et al. Chronic lymphocytic leukaemia. Nat Rev Dis Primers. 2017;3:17008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The CTB lab is supported by grants from AIRC (IG 2014-15220), Telethon-Italy (Grant GGP1102) and ITT-Regione Toscana. The MMDE lab is supported by grants from the University of Florence and the Italian Ministry of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laura Patrussi or Nagaja Capitani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patrussi, L., Capitani, N., D’Elios, M.M., Baldari, C.T. (2019). The B-Side of the Immune Response. In: D'Elios, M., Rizzi, M. (eds) Humoral Primary Immunodeficiencies. Rare Diseases of the Immune System. Springer, Cham. https://doi.org/10.1007/978-3-319-91785-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91785-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91784-9

  • Online ISBN: 978-3-319-91785-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics