Skip to main content

Hardware architectures for the fast Fourier transform

  • Chapter
  • First Online:

Abstract

The fast Fourier transform (FFT) is a widely used algorithm in signal processing applications. FFT hardware architectures are designed to meet the requirements of the most demanding applications in terms of performance, circuit area, and/or power consumption. This chapter summarizes the research on FFT hardware architectures by presenting the FFT algorithms, the building blocks in FFT hardware architectures, the architectures themselves, and the bit reversal algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahmed, T., Garrido, M., Gustafsson, O.: A 512-point 8-parallel pipelined feedforward FFT for WPAN. In: Proc. Asilomar Conf. Signals Syst. Comput., pp. 981–984 (2011)

    Google Scholar 

  2. Andraka, R.: A survey of CORDIC algorithms for FPGA based computers. In: Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, pp. 191–200. ACM (1998)

    Google Scholar 

  3. Argüello, F., Bruguera, J., Doallo, R., Zapata, E.: Parallel architecture for fast transforms with trigonometric kernel. IEEE Trans. Parallel Distrib. Syst. 5(10), 1091–1099 (1994)

    Article  Google Scholar 

  4. Bi, G., Jones, E.: A pipelined FFT processor for word-sequential data. IEEE Trans. Acoust., Speech, Signal Process. 37(12), 1982–1985 (1989)

    Article  Google Scholar 

  5. Boullis, N., Tisserand, A.: Some optimizations of hardware multiplication by constant matrices. IEEE Trans. Comput. 54(10), 1271–1282 (2005)

    Article  Google Scholar 

  6. Burrus, C., Eschenbacher, P.: An in-place, in-order prime factor FFT algorithm. Proc. IEEE Int. Symp. Circuits Syst. 29(4), 806–817 (1981)

    MATH  Google Scholar 

  7. Chakraborty, T.S., Chakrabarti, S.: On output reorder buffer design of bit reversed pipelined continuous data FFT architecture. In: Proc. IEEE Asia-Pacific Conf. Circuits Syst., pp. 1132–1135. IEEE (2008)

    Google Scholar 

  8. Chan, S.C., Yiu, P.M.: An efficient multiplierless approximation of the fast Fourier transform using sum-of-powers-of-two (SOPOT) coefficients. IEEE Signal Process. Lett. 9(10), 322–325 (2002)

    Article  Google Scholar 

  9. Chang, Y.N.: An efficient VLSI architecture for normal I/O order pipeline FFT design. IEEE Trans. Circuits Syst. II 55(12), 1234–1238 (2008)

    Article  Google Scholar 

  10. Chang, Y.N.: Design of an 8192-point sequential I/O FFT chip. In: Proc. World Congress Eng. Comp. Science, vol. II (2012)

    Google Scholar 

  11. Chen, J., Hu, J., Lee, S., Sobelman, G.E.: Hardware efficient mixed radix-25/16/9 FFT for LTE systems. IEEE Trans. VLSI Syst. 23(2), 221–229 (2015)

    Article  Google Scholar 

  12. Cheng, C., Yu, F.: An optimum architecture for continuous-flow parallel bit reversal. IEEE Signal Process. Lett. 22(12), 2334–2338 (2015)

    Article  Google Scholar 

  13. Cho, S.I., Kang, K.M.: A low-complexity 128-point mixed-radix FFT processor for MB-OFDM UWB systems. ETRI J. 32(1), 1–10 (2010)

    Article  Google Scholar 

  14. Cho, S.I., Kang, K.M., Choi, S.S.: Implementation of 128-point fast Fourier transform processor for UWB systems. In: Proc. Int. Wireless Comm. Mobile Comp. Conf., pp. 210–213 (2008)

    Google Scholar 

  15. Cohen, D.: Simplified control of FFT hardware. IEEE Trans. Acoust., Speech, Signal Process. 24(6), 577–579 (1976)

    Article  Google Scholar 

  16. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    Article  MathSciNet  Google Scholar 

  17. Cortés, A., Vélez, I., Sevillano, J.F.: Radix r k FFTs: Matricial representation and SDC/SDF pipeline implementation. IEEE Trans. Signal Process. 57(7), 2824–2839 (2009)

    Article  MathSciNet  Google Scholar 

  18. Dempster, A.G., Macleod, M.D.: Multiplication by two integers using the minimum number of adders. In: Proc. IEEE Int. Symp. Circuits Syst., vol. 2, pp. 1814–1817 (2005)

    Google Scholar 

  19. Despain, A.M.: Fourier transform computers using CORDIC iterations. IEEE Trans. Comput. C-23, 993–1001 (1974)

    Article  Google Scholar 

  20. Duhamel, P., Hollmann, H.: ’Split radix’ FFT algorithm. Electron. Lett. 20(1), 14–16 (1984)

    Article  Google Scholar 

  21. Edelman, A., Heller, S., Johnsson, L.: Index transformation algorithms in a linear algebra framework. IEEE Trans. Parallel Distrib. Syst. 5(12), 1302–1309 (1994)

    Article  Google Scholar 

  22. Fraser, D.: Array permutation by index-digit permutation. J. Assoc. Comp. Machinery (ACM) 23(2), 298–309 (1976)

    Article  MathSciNet  Google Scholar 

  23. Garrido, M.: Efficient hardware architectures for the computation of the FFT and other related signal processing algorithms in real time. Ph.D. thesis, Universidad Politécnica de Madrid (2009)

    Google Scholar 

  24. Garrido, M.: A new representation of FFT algorithms using triangular matrices. IEEE Trans. Circuits Syst. I 63(10), 1737–1745 (2016)

    Article  MathSciNet  Google Scholar 

  25. Garrido, M., Acevedo, M., Ehliar, A., Gustafsson, O.: Challenging the limits of FFT performance on FPGAs. In: Int. Symp. Integrated Circuits, pp. 172–175 (2014)

    Google Scholar 

  26. Garrido, M., Andersson, R., Qureshi, F., Gustafsson, O.: Multiplierless unity-gain SDF FFTs. IEEE Trans. VLSI Syst. 24(9), 3003–3007 (2016)

    Article  Google Scholar 

  27. Garrido, M., Grajal, J.: Efficient memoryless CORDIC for FFT computation. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 2, pp. 113–116 (2007)

    Google Scholar 

  28. Garrido, M., Grajal, J., Gustafsson, O.: Optimum circuits for bit reversal. IEEE Trans. Circuits Syst. II 58(10), 657–661 (2011)

    Article  Google Scholar 

  29. Garrido, M., Grajal, J., Sánchez, M.A., Gustafsson, O.: Pipelined radix-2k feedforward FFT architectures. IEEE Trans. VLSI Syst. 21(1), 23–32 (2013)

    Article  Google Scholar 

  30. Garrido, M., Gustafsson, O., Grajal, J.: Accurate rotations based on coefficient scaling. IEEE Trans. Circuits Syst. II 58(10), 662–666 (2011)

    Article  Google Scholar 

  31. Garrido, M., Huang, S.J., Chen, S.G.: Feedforward FFT hardware architectures based on rotator allocation. IEEE Trans. Circuits Syst. I 65(2), 581–592 (2018)

    Article  Google Scholar 

  32. Garrido, M., Huang, S.J., Chen, S.G., Gustafsson, O.: The serial commutator (SC) FFT. IEEE Trans. Circuits Syst. II 63(10), 974–978 (2016)

    Article  Google Scholar 

  33. Garrido, M., Källström, P., Kumm, M., Gustafsson, O.: CORDIC II: A new improved CORDIC algorithm. IEEE Trans. Circuits Syst. II 63(2), 186–190 (2016)

    Article  Google Scholar 

  34. Garrido, M., Qureshi, F., Gustafsson, O.: Low-complexity multiplierless constant rotators based on combined coefficient selection and shift-and-add implementation (CCSSI). IEEE Trans. Circuits Syst. I 61(7), 2002–2012 (2014)

    Article  Google Scholar 

  35. Garrido, M., Sánchez, M., López-Vallejo, M., Grajal, J.: A 4096-point radix-4 memory-based FFT using DSP slices. IEEE Trans. VLSI Syst. 25(1), 375–379 (2017)

    Article  Google Scholar 

  36. Glittas, A.X., Sellathurai, M., Lakshminarayanan, G.: A normal I/O order radix-2 FFT architecture to process twin data streams for MIMO. IEEE Trans. VLSI Syst. 24(6), 2402–2406 (2016)

    Article  Google Scholar 

  37. Gold, B., Rader, C.M.: Digital Processing of Signals. New York: McGraw Hill (1969)

    MATH  Google Scholar 

  38. Good, I.J.: The interaction algorithm and practical Fourier analysis. J. Royal Statistical Society B 20(2), 361–372 (1958)

    MathSciNet  MATH  Google Scholar 

  39. Granata, J., Conner, M., Tolimieri, R.: Recursive fast algorithm and the role of the tensor product. IEEE Trans. Signal Process. 40(12), 2921–2930 (1992)

    Article  Google Scholar 

  40. Gustafsson, O.: A difference based adder graph heuristic for multiple constant multiplication problems. In: Proc. IEEE Int. Symp. Circuits Syst., pp. 1097–1100. IEEE (2007)

    Google Scholar 

  41. Gustafsson, O.: On lifting-based fixed-point complex multiplications and rotations. In: Proc. IEEE Symp. Comput. Arithmetic (2017)

    Google Scholar 

  42. Gustafsson, O., Dempster, A.G., Johansson, K., Macleod, M.D., Wanhammar, L.: Simplified design of constant coefficient multipliers. Circuits Syst. Signal Process. 25(2), 225–251 (2006)

    Article  MathSciNet  Google Scholar 

  43. Gustafsson, O., Qureshi, F.: Addition aware quantization for low complexity and high precision constant multiplication. IEEE Signal Processing Letters 17(2), 173–176 (2010)

    Article  Google Scholar 

  44. Gustafsson, O., Wanhammar, L.: Arithmetic. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer (2018)

    Google Scholar 

  45. He, S., Torkelson, M.: Design and implementation of a 1024-point pipeline FFT processor. pp. 131–134 (1998)

    Google Scholar 

  46. Hsiao, C.F., Chen, Y., Lee, C.Y.: A generalized mixed-radix algorithm for memory-based FFT processors. IEEE Trans. Circuits Syst. II 57(1), 26–30 (2010)

    Article  Google Scholar 

  47. Hsiao, S.F., Lee, C.H., Cheng, Y.C., Lee, A.: Designs of angle-rotation in digital frequency synthesizer/mixer using multi-stage architectures. In: Proc. Asilomar Conf. Signals Syst. Comput., pp. 2181–2185 (2011)

    Google Scholar 

  48. Hu, Y., Naganathan, S.: An angle recoding method for CORDIC algorithm implementation. IEEE Trans. Comput. 42(1), 99–102 (1993)

    Article  Google Scholar 

  49. Huang, S.J., Chen, S.G.: A high-throughput radix-16 FFT processor with parallel and normal input/output ordering for IEEE 802.15.3c systems. IEEE Trans. Circuits Syst. I 59(8), 1752–1765 (2012)

    Article  MathSciNet  Google Scholar 

  50. Huang, S.J., Chen, S.G., Garrido, M., Jou, S.J.: Continuous-flow parallel bit-reversal circuit for MDF and MDC FFT architectures. IEEE Trans. Circuits Syst. I 61(10), 2869–2877 (2014)

    Article  Google Scholar 

  51. Jang, J.K., Kim, M.G., Sunwoo, M.H.: Efficient scheduling scheme for eight-parallel MDC FFT processor. In: Proc. Int. SoC Design Conf., pp. 277–278 (2015)

    Google Scholar 

  52. Järvinen, T.: Systematic methods for designing stride permutation interconnections. Ph.D. thesis, Tampere Univ. of Technology (2004)

    Google Scholar 

  53. Järvinen, T., Salmela, P., Sorokin, H., Takala, J.: Stride permutation networks for array processors. In: Proc. IEEE Int. Applicat.-Specific Syst. Arch. Processors Conf., pp. 376–386 (2004)

    Google Scholar 

  54. Järvinen, T., Salmela, P., Sorokin, H., Takala, J.: Stride permutation networks for array processors. J. VLSI Signal Process. Syst. 49(1), 51–71 (2007)

    Article  Google Scholar 

  55. Jo, B.G., Sunwoo, M.H.: New continuous-flow mixed-radix (CFMR) FFT processor using novel in-place strategy. IEEE Trans. Circuits Syst. I 52(5), 911–919 (2005)

    Article  MathSciNet  Google Scholar 

  56. Johnston, J.A.: Parallel pipeline fast Fourier transformer. In: IEE Proc. F Comm. Radar Signal Process., vol. 130, pp. 564–572 (1983)

    Google Scholar 

  57. Källström, P., Garrido, M., Gustafsson, O.: Low-complexity rotators for the FFT using base-3 signed stages. In: Proc. IEEE Asia-Pacific Conf. Circuits Syst., pp. 519–522 (2012)

    Google Scholar 

  58. Kim, M.G., Shin, S.K., Sunwoo, M.H.: New parallel MDC FFT processor with efficient scheduling scheme. In: Proc. IEEE Asia-Pacific Conf. Circuits Syst., pp. 667–670 (2014)

    Google Scholar 

  59. Kristensen, F., Nilsson, P., Olsson, A.: Flexible baseband transmitter for OFDM. In: Proc. IASTED Conf. Circuits Signals Syst., pp. 356–361 (2003)

    Google Scholar 

  60. Kumm, M., Hardieck, M., Zipf, P.: Optimization of constant matrix multiplication with low power and high throughput. IEEE Transactions on Computers PP(99), 1–1 (2017)

    Google Scholar 

  61. Lee, H.Y., Park, I.C.: Balanced binary-tree decomposition for area-efficient pipelined FFT processing. IEEE Trans. Circuits Syst. I 54(4), 889–900 (2007)

    Article  Google Scholar 

  62. Lee, J., Lee, H., in Cho, S., Choi, S.S.: A high-speed, low-complexity radix-24 FFT processor for MB-OFDM UWB systems. In: Proc. IEEE Int. Symp. Circuits Syst., pp. 210–213 (2006)

    Google Scholar 

  63. Li, C.C., Chen, S.G.: A radix-4 redundant CORDIC algorithm with fast on-line variable scale factor compensation. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 1, pp. 639–642 (1997)

    Google Scholar 

  64. Li, N., van der Meijs, N.: A radix 22 based parallel pipeline FFT processor for MB-OFDM UWB system. In: Proc. IEEE Int. SOC Conf., pp. 383–386 (2009)

    Google Scholar 

  65. Li, S., Xu, H., Fan, W., Chen, Y., Zeng, X.: A 128/256-point pipeline FFT/IFFT processor for MIMO OFDM system IEEE 802.16e. In: Proc. IEEE Int. Symp. Circuits Syst., pp. 1488–1491 (2010)

    Google Scholar 

  66. Lin, C.H., Wu, A.Y.: Mixed-scaling-rotation CORDIC (MSR-CORDIC) algorithm and architecture for high-performance vector rotational DSP applications. IEEE Trans. Circuits Syst. I 52(11), 2385–2396 (2005)

    Article  Google Scholar 

  67. Lin, Y.W., Lee, C.Y.: Design of an FFT/IFFT processor for MIMO OFDM systems. IEEE Trans. Circuits Syst. I 54(4), 807–815 (2007)

    Article  MathSciNet  Google Scholar 

  68. Liu, H., Lee, H.: A high performance four-parallel 128/64-point radix-24 FFT/IFFT processor for MIMO-OFDM systems. In: Proc. IEEE Asia Pacific Conf. Circuits Syst., pp. 834–837 (2008)

    Google Scholar 

  69. Liu, L., Ren, J., Wang, X., Ye, F.: Design of low-power, 1GS/s throughput FFT processor for MIMO-OFDM UWB communication system. In: Proc. IEEE Int. Symp. Circuits Syst., pp. 2594–2597 (2007)

    Google Scholar 

  70. Liu, X., Yu, F., Wang, Z.: A pipelined architecture for normal I/O order FFT. Journal of Zhejiang University - Science C 12(1), 76–82 (2011)

    Article  Google Scholar 

  71. Ma, Y., Wanhammar, L.: A hardware efficient control of memory addressing for high-performance FFT processors. IEEE Trans. Signal Process. 48(3), 917–921 (2000)

    Article  Google Scholar 

  72. Ma, Z.G., Yin, X.B., Yu, F.: A novel memory-based FFT architecture for real-valued signals based on a radix-2 decimation-in-frequency algorithm. IEEE Trans. Circuits Syst. II 62(9), 876–880 (2015)

    Article  Google Scholar 

  73. Macleod, M.D.: Multiplierless implementation of rotators and FFTs. EURASIP J. Appl. Signal Process. 2005(17), 2903–2910 (2005)

    MATH  Google Scholar 

  74. Majumdar, M., Parhi, K.K.: Design of data format converters using two-dimensional register allocation. IEEE Trans. Circuits Syst. II 45(4), 504–508 (1998)

    Article  Google Scholar 

  75. Meher, P.K., Park, S.Y.: CORDIC designs for fixed angle of rotation. IEEE Trans. VLSI Syst. 21(2), 217–228 (2013)

    Article  Google Scholar 

  76. Meher, P.K., Valls, J., Juang, T.B., Sridharan, K., Maharatna, K.: 50 years of CORDIC: Algorithms, architectures, and applications. IEEE Trans. Circuits Syst. I 56(9), 1893–1907 (2009)

    Article  MathSciNet  Google Scholar 

  77. Möller, K., Kumm, M., Garrido, M., Zipf, P.: Optimal shift reassignment in reconfigurable constant multiplication circuits. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. (2017). Accepted for publication

    Google Scholar 

  78. Oh, J.Y., Lim, M.S.: New radix-2 to the 4th power pipeline FFT processor. IEICE Trans. Electron. E88-C(8), 1740–1746 (2005)

    Article  Google Scholar 

  79. Paeth, A.W.: A fast algorithm for general raster rotation. In: Proc. Graphics Interface, pp. 77–81 (1986)

    Google Scholar 

  80. Parhi, K.K.: Systematic synthesis of DSP data format converters using life-time analysis and forward-backward register allocation. IEEE Trans. Circuits Syst. II 39(7), 423–440 (1992)

    Article  Google Scholar 

  81. Park, S.Y., Yu, Y.J.: Fixed-point analysis and parameter selections of MSR-CORDIC with applications to FFT designs. IEEE Trans. Signal Process. 60(12), 6245–6256 (2012)

    Article  MathSciNet  Google Scholar 

  82. Püschel, M., Milder, P.A., Hoe, J.C.: Permuting streaming data using RAMs. J. ACM 56(2), 10:1–10:34 (2009)

    Article  MathSciNet  Google Scholar 

  83. Qureshi, F., Gustafsson, O.: Generation of all radix-2 fast Fourier transform algorithms using binary trees. In: Proc. Europ. Conf. Circuit Theory Design, pp. 677–680 (2011)

    Google Scholar 

  84. Qureshi, F., Gustafsson, O.: Low-complexity constant multiplication based on trigonometric identities with applications to FFTs. IEICE Trans. Fundamentals E94-A(11), 324–326 (2011)

    Article  Google Scholar 

  85. Reisis, D., Vlassopoulos, N.: Conflict-free parallel memory accessing techniques for FFT architectures. IEEE Trans. Circuits Syst. I 55(11), 3438–3447 (2008)

    Article  MathSciNet  Google Scholar 

  86. Sánchez, M., Garrido, M., López, M., Grajal, J.: Implementing FFT-based digital channelized receivers on FPGA platforms. IEEE Trans. Aerosp. Electron. Syst. 44(4), 1567–1585 (2008)

    Article  Google Scholar 

  87. Serre, F., Holenstein, T., Püschel, M.: Optimal circuits for streamed linear permutations using RAM. In: Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, pp. 215–223. ACM (2016)

    Google Scholar 

  88. Shih, X.Y., Liu, Y.Q., Chou, H.R.: 48-mode reconfigurable design of SDF FFT hardware architecture using radix-32 and radix-23 design approaches. IEEE Trans. Circuits Syst. I 64(6), 1456–1467 (2017)

    Article  Google Scholar 

  89. Shukla, R., Ray, K.: Low latency hybrid CORDIC algorithm. IEEE Trans. Comput. 63(12), 3066–3078 (2014)

    Article  MathSciNet  Google Scholar 

  90. Stone, H.: Parallel processing with the perfect shuffle. IEEE Trans. Comput. C-20(2), 153–161 (1971)

    Article  Google Scholar 

  91. Takagi, N., Asada, T., Yajima, S.: Redundant CORDIC methods with a constant scale factor for sine and cosine computation. IEEE Trans. Comput. 40(9), 989–995 (1991)

    Article  MathSciNet  Google Scholar 

  92. Takala, J., Järvinen, T.: Stride Permutation Access In Interleaved Memory Systems. Domain-Specific Processors: Systems, Architectures, Modeling, and Simulation, S. Bhattacharyya, E. Deprettere and J. Teich. CRC Press (2003)

    Book  Google Scholar 

  93. Takala, J., Jarvinen, T., Sorokin, H.: Conflict-free parallel memory access scheme for FFT processors. In: Proc. IEEE Int. Symp. Circuits Syst., vol. 4, pp. 524–527 (2003)

    Google Scholar 

  94. Tang, S.N., Tsai, J.W., Chang, T.Y.: A 2.4-GS/s FFT processor for OFDM-based WPAN applications. IEEE Trans. Circuits Syst. II 57(6), 451–455 (2010)

    Article  Google Scholar 

  95. Tsai, P.Y., Lin, C.Y.: A generalized conflict-free memory addressing scheme for continuous-flow parallel-processing FFT processors with rescheduling. IEEE Trans. VLSI Syst. 19(12), 2290–2302 (2011)

    Article  Google Scholar 

  96. Tummeltshammer, P., Hoe, J.C., Püschel, M.: Time-multiplexed multiple-constant multiplication. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 26(9), 1551–1563 (2007)

    Article  Google Scholar 

  97. Volder, J.E.: The CORDIC trigonometric computing technique. IRE Trans. Electronic Computing EC-8, 330–334 (1959)

    Article  Google Scholar 

  98. Voronenko, Y., Püschel, M.: Multiplierless multiple constant multiplication. ACM Trans. Algorithms 3, 1–39 (2007)

    Article  MathSciNet  Google Scholar 

  99. Wang, J., Xiong, C., Zhang, K., Wei, J.: A mixed-decimation MDF architecture for radix- 2k parallel FFT. IEEE Trans. VLSI Syst. 24(1), 67–78 (2016)

    Article  Google Scholar 

  100. Wang, Z., Liu, X., He, B., Yu, F.: A combined SDC-SDF architecture for normal I/O pipelined radix-2 FFT. IEEE Trans. VLSI Syst. 23(5), 973–977 (2015)

    Article  Google Scholar 

  101. Wenzler, A., Luder, E.: New structures for complex multipliers and their noise analysis. In: Proc. IEEE Int. Symp. Circuits Syst., vol. 2, pp. 1432–1435 (1995)

    Google Scholar 

  102. Wold, E., Despain, A.: Pipeline and parallel-pipeline FFT processors for VLSI implementations. IEEE Trans. Comput. C-33(5), 414–426 (1984)

    Article  Google Scholar 

  103. Wu, C.S., Wu, A.Y.: Modified vector rotational CORDIC (MVR-CORDIC) algorithm and architecture. IEEE Trans. Circuits Syst. II 48(6), 548–561 (2001)

    Article  Google Scholar 

  104. Wu, C.S., Wu, A.Y., Lin, C.H.: A high-performance/low-latency vector rotational CORDIC architecture based on extended elementary angle set and trellis-based searching schemes. IEEE Trans. Circuits Syst. II 50(9), 589–601 (2003)

    Article  Google Scholar 

  105. Xia, K.F., Wu, B., Xiong, T., Ye, T.C.: A memory-based FFT processor design with generalized efficient conflict-free address schemes. IEEE Trans. VLSI Syst. 25(6), 1919–1929 (2017)

    Article  Google Scholar 

  106. Xing, Q., Ma, Z., Xu, Y.: A novel conflict-free parallel memory access scheme for FFT processors. IEEE Trans. Circuits Syst. II (2017)

    Google Scholar 

  107. Xudong, W., Yu, L.: Special-purpose computer for 64-point FFT based on FPGA. In: Proc. Int. Conf. Wireless Comm. Signal Process., pp. 1–3 (2009)

    Google Scholar 

  108. Yang, K.J., Tsai, S.H., Chuang, G.: MDC FFT/IFFT processor with variable length for MIMO-OFDM systems. IEEE Trans. VLSI Syst. 21(4), 720–731 (2013)

    Article  Google Scholar 

  109. Yang, L., Zhang, K., Liu, H., Huang, J., Huang, S.: An efficient locally pipelined FFT processor. IEEE Trans. Circuits Syst. II 53(7), 585–589 (2006)

    Article  Google Scholar 

  110. Yeh, W.C., Jen, C.W.: High-speed and low-power split-radix FFT. IEEE Trans. Signal Process. 51(3), 864–874 (2003)

    Article  MathSciNet  Google Scholar 

  111. Yu, C., Yen, M.H.: Area-efficient 128- to 2048∕1536-point pipeline FFT processor for LTE and mobile WiMAX systems. IEEE Trans. VLSI Syst. 23(9), 1793–1800 (2015)

    Article  MathSciNet  Google Scholar 

  112. Zheng, W., Li, K.: Split radix algorithm for length 6m DFT. IEEE Signal Process. Lett. 20(7), 713–716 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahad Qureshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garrido, M., Qureshi, F., Takala, J., Gustafsson, O. (2019). Hardware architectures for the fast Fourier transform. In: Bhattacharyya, S., Deprettere, E., Leupers, R., Takala, J. (eds) Handbook of Signal Processing Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-91734-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91734-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91733-7

  • Online ISBN: 978-3-319-91734-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics