Skip to main content

Fabrication of PLA-HAp-CS Based Biocompatible and Biodegradable Feedstock Filament Using Twin Screw Extrusion

  • Chapter
  • First Online:
Additive Manufacturing of Emerging Materials

Abstract

In this chapter, detailed procedure for development of biocompatible and biodegradable composite material based feedstock filament, by using twin screw extrusion (TSE) process has been highlighted. The poly lactic acid (PLA) has been selected as a polymer matrix with hydroxyapatite (HAp) and chitosan (CS) as osteo-conductive filler for potential use in medical applications. The feedstock filament of PLA-HAp-CS can be used in fused deposition modelling (FDM) open source 3D printer (without change in any hardware or software of system) for printing of functional/ non functional prototypes. The results are supported by tensile testing; thermal analysis; and scanning electron microscope (SEM) based photomicrographs. Finally the feasibility of fabrication of functional prototypes for medical applications by using in house prepared feedstock filament on the FDM has been ascertained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anitha, R. and Arunachalam, S. (2001), “Critical parameters influencing the quality of prototypes in fused deposition modeling”, Journal of Materials Processing Technology, Vol. 113, Issue 1–3, pp. 385–388.

    Article  Google Scholar 

  2. Chhabra, M. and Singh, R. (2011), “Rapid casting solutions a review”, Rapid Prototyping Jounral, Vol. 17, pp. 328–350.

    Article  Google Scholar 

  3. Choudhury, A., Chakraborty, D. and Reddy, B. (2007), “Extruder path generation for Curved Layer Fused Deposition Modeling”, Computer-aided design Journal, Vol. 40, pp. 235–243.

    Google Scholar 

  4. Singh, R., Singh, S., Singh, I. P., Fabbrocino, F. and Fraternali, F. (2017), “Investigation for surface finish improvement of FDM parts by vapour smoothing process”, Composites Part B: Engineering, Vol. 111, pp. 228–234.

    Article  Google Scholar 

  5. Kumar, R., Singh, R., Hui, D., Feo, L. and Fraternali, F. (2017), “Graphene as biomedical sensing element: State of art review and potential engineering applications”, Composites Part B: Engineering, https://doi.org/10.1016/j.compositesb.2017.09.049

  6. Singh, R., Kumar, R., Feo, L. and Fraternali, F. (2016), “Friction welding of dissimilar plastic/polymer materials with metal powder reinforcement for engineering applications”, Composites Part B: Engineering, Vol. 101, pp. 77–86.

    Article  Google Scholar 

  7. Block, J. E. and Poser, J. (1995), “Does xenogeneic demineralized bone matrix have clinical utility as a bone graft substitute?”,Med Hypotheses, Vol. 45, pp. 27–32.

    Article  Google Scholar 

  8. Sasso, R. C., Williams, J. I., Dimasi, N., Meyer Jr. P. R. (1998), “Postoperative drains at the donor site of iliac-crest bone grafts. A prospective, randomized study of morbidity at the donor site in patients who had a traumatic injury of the spine”, J Bone Joint Surgical Am, Vol. 80, pp. 631–635.

    Article  Google Scholar 

  9. Rose, F. R. A. J. and Oreffo, R. O. C. (2002), “Bone tissue engineering: hope vs hype”, BiochemBiophys Res Commun, Vol. 292, pp. 1–7.

    Article  Google Scholar 

  10. Du, C., Cui, F. Z., Zhang, W., Feng, Q. L., Zhu, X. D. and Groot, K. D. (2000), “ Formation of calcium phosphate/collagen composites through mineralization of collagen matrix”, J Biomed Mater Res A, Vol. 50, pp. 518–27.

    Article  Google Scholar 

  11. Kikuchi, M., Itoh, S., Ichinose, S., Shinomiya, K. and Tanaka, J. (2001), “Self organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo”, Biomaterials, Vol. 22, pp. 1705–11.

    Article  Google Scholar 

  12. Burg, K. J. L., Porter, S. and Kellam, J. F. (2000), “Biomaterial developments for bone tissue engineering”, Biomaterials, Vol. 21, pp. 2347–2359.

    Article  Google Scholar 

  13. Chang, M. C. and Tanaka, J. (2002), “XPS study for the microstructure development of hydroxyapatite-collagen nano-composites cross linked using glutaraldehyde”, Biomaterials, Vol. 23, pp. 3879–85.

    Article  Google Scholar 

  14. Grodzinski, J. J. (1999), “Biomedical application of functional polymers”, React Function Polymer, Vol. 39, pp. 99–138.

    Article  Google Scholar 

  15. Hutmacher, D. W. (2000), “Scaffolds in tissue engineering bone and cartilage”, Biomaterials, Vol. 21, pp. 29–43.

    Article  Google Scholar 

  16. Ishihara, M., Ono, K., Saito, Y., Yura, H., Hattori, H. and Matsui, T. (2001), “Photo cross-linkable chitosan: an effective adhesive with surgical applications”, Int Cong Ser, Vol. 1223, pp. 251–257.

    Article  Google Scholar 

  17. Madihally, S. V. and Matthew, H. W. T. (1999), “Porous chitosan scaffolds for tissue engineering”, Biomaterials, Vol. 20, pp. 1133–1142.

    Article  Google Scholar 

  18. Mi, F. L., Tan, Y. C., Liang, H. F. and Sung, H. W. (2002), “In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant”, Biomaterials, Vol. 23, pp. 181–91.

    Article  Google Scholar 

  19. Wang, L. S., Khor, E., Wee, A. and Lim, L. Y. (2002), “Chitosan-alginate PEC membrane as a wound dressing: assessment of incisional wound healing”, J Biomed Mater Res B, Vol. 63, pp. 610–618.

    Article  Google Scholar 

  20. Li, Z. S., Ramay, H. R., Hauch, K. D., Xiao, D. M. and Zhang, M. Q. (2005), “Chitosan-alginate hybrid scaffolds for bone tissue engineering”, Biomaterials, Vol. 26, pp. 3919–3928.

    Article  Google Scholar 

  21. Sarasam, A. and Madihally, S. V. (2005), “Characterization of chitosan-polycaprolactone blends for tissue engineering applications”, Biomaterials, Vol. 26, Issue 5, pp. 500–508.

    Google Scholar 

  22. Shanmugasundaram, N., Ravichandran, P., Reddy, P. N., Ramamurty, N., Pal, S. and Rao, K. P. (2001), “Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells”, Biomaterials, Vol. 22, pp. 1943–1951.

    Article  Google Scholar 

  23. Andrew, C. A. W., Eugene, K. and Garth, W. H. (1998), “Preparation of a chitin–apatite composite by in situ precipitation onto porous chitin scaffolds”, J Biomed Mater Res A, Vol. 41, pp. 541–548.

    Article  Google Scholar 

  24. Kawakami, T., Antoh, M., Hasegawa, H., Yamagichi, T., Ito, M. and Eda, S. (1992), “Experimental study on osteoconductive properties of chitosan-bonded hydroxyapatite self-hardening paste”, Biomaterials, Vol. 13, pp. 759–763.

    Article  Google Scholar 

  25. Yamaguchi, I., Tokuchi, K., Fukuzaki, H., Koyama, Y., Takakuda, K. and Monma, H. (2001), “Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites”, J Biomed Mater Res A, Vol. 55, pp. 20–27.

    Article  Google Scholar 

  26. Yin, Y. J., Zhao, F., Song, X. F., Yao, K. D., Lu, W. W. and Leong, J. C. (2000), “Preparation and characterization of hydroxyapatite/chitosan–gelatin network composite”, J ApplPolymSci, Vol. 77, pp. 2929–2938.

    Google Scholar 

  27. Ariyapitipun, T., Mustapha, A. and Clarke, A. D. (1999), “Microbial shelf life determination of vacuum-packaged fresh beef treated with polylactic acid, lactic acid, and nisin solutions”, Journal of food protection, Vol. 62, Issue 8, pp. 913–920.

    Article  Google Scholar 

  28. Kale, G., Auras, R., Singh, S. P. and Narayan, R. (2007), “Biodegradability of polylactide bottles in real and simulated composting conditions”, Polymer Testing, Vol. 26, Issue 8, pp. 1049–1061.

    Article  Google Scholar 

  29. Fini, M., Giannini, S., Gioradano, R., Giavaresi, G., Grimaldi, M. and Aldini, N. N. (1995), “Resorbable device for fracture fixation: in vivo degradation and mechanical behavior”, Int J Artif Organs, Vol. 18, pp. 772–776.

    Article  Google Scholar 

  30. Shen, X. Y., Tong, H., Jiang, T., Zhu, Z. H., Wan, P. and Hu, J. M. (2007), “Homogeneous chitosan/carbonate apatite/citric acid nano-composites prepared through a novel in situ precipitation method”, Compos Sci Technology, Vol. 67, pp. 2238–2245.

    Article  Google Scholar 

  31. Taddei, P., Monti, P. and Simoni, R. (2002), “Vibrational and thermal study on the in vitro and in vivo degradation of a poly (lactic acid) based bio-absorbable periodontal membrane”, J Mater Sci Mater Med, Vol. 13, pp. 469–475.

    Article  Google Scholar 

  32. Shen, X. Y., Tong, H., Zhu, Z. H., Wan, P. and Hu, J. M. (2007), “A novel approach of homogenous inorganic/organic composites through in situ precipitation in poly-acrylic acid gel”, Mater Lett, Vol. 61, pp. 629–634.

    Article  Google Scholar 

  33. Gupta, B., Revagade, N. and Hilborn J. (2007), “Poly (lactic acid) fiber: an overview”, Prog. Polym.Sci., Vol. 32, pp. 455–482.

    Article  Google Scholar 

  34. Ge, Z., Goh, J.C., Wang, L., Tan, E.P. and Lee, E.H. (2005),“Characterization of knitted polymeric scaffolds for potential use in ligament tissue engineering”, J. Biomater. Sci. Polym. Ed., Vol. 16, pp. 1179–1192.

    Article  Google Scholar 

  35. Ouyang, H.W., Goh, J.C., Thambyah, A., Teoh, S.H. and Lee, E.H. (2003),“Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regenera-tion of rabbit Achilles tendon”, Tissue Eng.,Vol. 9,pp. 431–439.

    Article  Google Scholar 

  36. Freeman, J.W., Woods, M.D. and Laurencin, C.T. (2007),“Tissue engineering of the anterior cruciate ligament using a braid–twist scaffold design”, J. Biomech., Vol. 40, pp. 2029–2036.

    Article  Google Scholar 

  37. Singh, R., Kumar, R., Ranjan, N., Penna, R. and Fraternali, F. (2017), “On the recyclability of polyamide for sustainable composite structures in civil engineering”, Composite Structures, https://doi.org/10.1016/j.compstruct.2017.10.036

  38. Kalita, S.J., Bhardwaj, A. and Bhatt, H.A.(2007), “Nanocrystalline calcium phosphate ceramics in biomedical engineering”,Material Science and Engineering: C, Vol. 27, Issue 3, pp. 441–449.

    Article  Google Scholar 

  39. Mostafa, N.Y. and Brown, P.W. (2007),“Computer simulation of stoichiometric hydroxyapatite: Structure and substitutions”,Journal of Physics and Chemistry of Solids, Vol. 68, Issue 3, pp. 431–437.

    Article  Google Scholar 

  40. Teixeira, S., Rodriguez, M.A., Pena, P., De Aza, A.H., De Aza, S. and Ferraz, M.P. (2009),“Physical characterization of hydroxyapatite porous scaffolds for tissue engineering”,Material Science and Engineering: C, Vol. 29, Issue 5, pp. 1510–1524.

    Article  Google Scholar 

  41. Guo, L., Huang, M. and Zhang, X.(2003),“Effects of sintering temperature on structure of hydroxyapatite studied with Rietveld method”, Journal of Materials Science: Material in Medicine, Vol. 14, Issue 9, pp. 817–822.

    Google Scholar 

  42. Auras, R., Harte, B. and Selke S. (2004), “An overview of polylactides as packaging materials”, Macromol. Biosci., Vol. 4, pp. 835–864.

    Article  Google Scholar 

  43. Ravindra, R., Krovvidi, K.R. and Khan, A.A. (1998), “Solubility parameter of chitin and chitosan”, Carbohydr. Polym., Vol. 36, pp. 121–127.

    Article  Google Scholar 

  44. Bonilla, J., Fortunati, E., Vargas, M., Chiralt, A. and Kenny, J.M. (2013), “Effects of chitosan on the physicochemical and antimicrobial properties of PLA films”, J. Food Eng., Vol. 119, pp. 236–243.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to SERB (DST), GOI for financial support and Manufacturing Research Lab (Dept. of Production Engineering, Guru Nanak Dev Engineering College, Ludhiana), Punjabi University Patiala for technical support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ranjan, N., Singh, R., Ahuja, I.P.S., Singh, J. (2019). Fabrication of PLA-HAp-CS Based Biocompatible and Biodegradable Feedstock Filament Using Twin Screw Extrusion. In: AlMangour, B. (eds) Additive Manufacturing of Emerging Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-91713-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91713-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91712-2

  • Online ISBN: 978-3-319-91713-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics