Skip to main content

Electrolytic Influences on the Depolarization/Repolarization Patterns

  • Chapter
  • First Online:
  • 1959 Accesses

Abstract

Normal cardiac action potentials may be influenced by electrolyte imbalance, owing to changes in intra- and extracellular electrolyte concentrations. The ECG may be a way to estimate the severity of electrolyte imbalances and to judge whether there is a possible risk for life-threatening arrhythmias.

At a serum potassium level of 7.0–8.0 mEq/L, the ECG frequently shows peaked T waves; decreased amplitude of P waves; prolonged PR interval; sinoatrial, atrioventricular, and intraventricular conduction depression; widening of the QRS; and ST-segment elevation.

The hallmarks of hypokalemia-induced ECG changes are depressed ST segment and depressed or inverted T wave of low amplitude, prominent (deepened and broadened) U wave, prolonged QT interval, P wave increased amplitude and width, and prolonged PR interval (first-grade atrioventricular block).

Hypercalcemia and hypocalcemia influence predominantly the duration of the action potentials.

Increase of extracellular calcium concentration reduces the duration of the ventricular action potential by shortening phase 2. ECG changes secondary to hypercalcemia—shortened QT interval, prolonged QRS duration, bradycardia, all degrees of AV blocks, sinus node dysfunction and tachy-brady syndrome, ventricular tachycardia, ventricular fibrillation, and torsades de pointes—are also possible.

ECG changes secondary to hypocalcemia—prolonged QT interval, shortened QRS duration, AV block, sinus bradycardia, sinoatrial block, torsades de pointes, and ventricular fibrillation—are uncommon. However torsades de pointes cases have been observed in patients with QT prolongation due to hypomagnesemia. Severe hypermagnesemia can cause AV and IV conduction delays that can culminate in complete AV block.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. AHA. Part 10.1: life-threatening electrolyte abnormalities. Circulation. 2005;112:IV.121–5.

    Google Scholar 

  2. Oreto G. L’elettrocardiogramma: un mosaico a 12 tessere. Milano: Edi Ermes; 2008.

    Google Scholar 

  3. Oreto G. I disordini del ritmo cardiaco. Torino: Centro scientifico editore; 1997.

    Google Scholar 

  4. Levis JT. ECG diagnosis: hyperacute T waves. Perm J. 2015;19(3):79.

    PubMed  PubMed Central  Google Scholar 

  5. Sims DB, Sperling LS. Images in cardiovascular medicine. ST-segment elevation resulting from hyperkalemia. Circulation. 2005;111(19):e295–6.

    Article  Google Scholar 

  6. Hanna EB, Glancy DL. ST-segment elevation: Differential diagnosis, caveats. Cleve Clin J Med. 2015;82(6):373–84. https://doi.org/10.3949/ccjm.82a.14026.

    Article  PubMed  Google Scholar 

  7. Hunuk A, Hunuk B, Kusken O, Onur OE. Brugada phenocopy induced by electrolyte disorder: a transient electrocardiographic sign. Ann Noninvasive Electrocardiol. 2016;21(4):429–32.

    Article  Google Scholar 

  8. Dendramis G, Petrina SM, Baranchuk A. Not all ST-segment elevations are myocardial infarction: hyperkalemia and brugada phenocopy. Am J Emerg Med. 2017;35(4):662.e1–2.

    Article  Google Scholar 

  9. Durfey N, Lehnhof B, Bergeson A, Durfey SNM, Leytin V, McAteer K, Schwam E, Valiquet J. Severe hyperkalemia: can the electrocardiogram risk stratify for short-term adverse events? West J Emerg Med. 2017;18(5):963–71. https://doi.org/10.5811/westjem.2017.6.33033.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Faggioni M, Knollmann BC. Arrhythmia protection in hypokalemia: a novel role of Ca2+-activated K+ currents in the ventricle. Circulation. 2015;132:1371–3.

    Article  Google Scholar 

  11. Huth EJ, Squires RD. The relation of cardiovascular phenomena to metabolic changes in a patient with chronic hypokalemia. Circulation. 1956;14:60–71.

    Article  CAS  Google Scholar 

  12. Surawicz B, Lepeschkin E. The electrocardiographic pattern of hypopotassemia with and without hypocalcemia. Circulation. 1953;8:801–28.

    Article  CAS  Google Scholar 

  13. Weaver WF, Burchell HB. Serum potassium and the electrocardiogram in hypokalemia. Circulation. 1960;21:505–21.

    Article  CAS  Google Scholar 

  14. Guimard C, Batard E, Lavainne F, Trewick D. Is severe hypercalcemia immediately life-threatening? Eur J Emerg Med. 2017;25(2):110–3. https://doi.org/10.1097/MEJ.462.

    Article  Google Scholar 

  15. Bechtel JT, White JE, Harvey Estes E. The electrocardiographic effects of hypocalcemia induced in normal subjects with edathamil disodium. Circulation. 1956;13:837–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cupido, C., Enea, G., Fioranelli, A., Ricciotti, J. (2019). Electrolytic Influences on the Depolarization/Repolarization Patterns. In: Capucci, A. (eds) New Concepts in ECG Interpretation. Springer, Cham. https://doi.org/10.1007/978-3-319-91677-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91677-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91676-7

  • Online ISBN: 978-3-319-91677-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics