Skip to main content

41 The Interface Between Tectonic Evolution and Cold-Water Coral Dynamics in the Mediterranean

  • Chapter
  • First Online:
  • 1436 Accesses

Part of the book series: Coral Reefs of the World ((CORW,volume 9))

Abstract

Circulation and water properties in the Mediterranean basin, and thus the living conditions for marine biota, including cold-water corals, are a strong function of the connectivity of the basin with neighbouring water masses. The configuration of the basin and its connections with adjacent basins are governed by the interplay of large scale and regional scale geodynamical (or tectonic) processes within the Mediterranean region. As to surface area, it appears that the Mediterranean basin as a whole is closing whereas some of its sub-basins are opening, at the expense of the eastern Mediterranean basin. More important are opening or closure of gateway connections. The pertinent Mediterranean gateways to the Atlantic Ocean and the Black Sea are potentially subject to minor changes resulting from tectonics. However, the impact of such possible changes on marine conditions, including those for cold-water corals, would be slow and of minor magnitude compared to the effects of climate change. Typical aspects of cold-water coral occurrences in the Mediterranean region, notably the uplift and outcrops of Plio-Pleistocene communities and the presence of steep faults (with steered fluid seeps providing nutrients) as preferred production areas, are accounted for by vertical motions in subduction zone evolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alvarez-Perez G, Busquets P, de Mol B, et al (2005) Deep-water coral occurrences in the Strait of Gibraltar. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 207–221

    Chapter  Google Scholar 

  • Antonioli F, Ferranti L, Lambeck K, et al (2006) Late Pleistocene to Holocene record of changing uplift rates in southern Calabria and northeastern Sicily (southern Italy, Central Mediterranean Sea). Tectonophysics 422:23–40

    Article  Google Scholar 

  • Argnani A (2009) Evolution of the southern Tyrrhenian slab tear and active tectonics along the western edge of the Tyrrhenian subducted slab. In: van Hinsbergen DJJ, Edwards M, Govers R (eds) Collision and collapse at the Africa–Arabia–Eurasia subduction zone. The Geological Society, London, Special Publications 311:193–212

    Google Scholar 

  • Bohnhoff M, Bult F, Dresen G, et al (2013) An earthquake gap south of Istanbul. Nat Commun 4:1999. https://doi.org/10.1038/ncomms2999

    Article  CAS  PubMed  Google Scholar 

  • de la Vara A, Meijer P (2016) Response of Mediterranean circulation to Miocene shoaling and closure of the Indian gateway – a model study. Palaeogeogr Palaeoclimatol Palaeoecol 442:96–109

    Google Scholar 

  • de la Vara A, Topper RPM, Meijer PT, et al (2015) Water exchange through the Betic and Rifian corridors prior to the Messinian salinity crisis: a model study. Paleoceanography 30. https://doi.org/10.1002/2014PA00271

  • di Geronimo J, Messina C, Rosso A, et al (2005) Enhanced biodiversity in the deep: early Pleistocene coral communities from southern Italy. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 61–86

    Chapter  Google Scholar 

  • Ergintav S, Reilinger RE, Çakmak R, et al (2014) Istanbul’s earthquake hot spots: geodetic constraints on strain accumulation along faults in the Marmara seismic gap. Geophys Res Lett 41:5783–5788

    Article  Google Scholar 

  • Faccenna C, Funiciello F, Giardini D, et al (2001) Episodic back-arc extension during restricted mantle convection in the Central Mediterranean. Earth Planet Sci Lett 187:105–116

    Article  CAS  Google Scholar 

  • Faccenna C, Molin P, Orecchio B, et al (2011) Topography of the Calabria subduction zone (southern Italy): clues for the origin of Mt. Etna. Tectonics 30. https://doi.org/10.1029/2010TC002694

  • Fink HG, Wienberg C, Hebbeln D, et al (2012) Oxygen control on Holocene cold-water coral development in the eastern Mediterranean Sea. Deep-Sea Res Part 1 Oceanogr Res Pap 62:89–96

    Article  CAS  Google Scholar 

  • Fink HG, Wienberg C, De Pol-Holz R, et al (2015) Spatio-temporal distribution patterns of Mediterranean cold-water corals (Lophelia pertusa and Madrepora oculata) during the past 14,000 years. Deep-Sea Res Part 1 Oceanogr Res Pap 103:37–48

    Article  Google Scholar 

  • Flecker R, MEDGATE team (2015) Evolution of the late Miocene Mediterranean-Atlantic gateways and their impact on regional and global environmental change. Earth-Sci Rev 150:365–392

    Article  Google Scholar 

  • Freiwald A, Roberts JM (eds) (2005) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, 1243 p

    Google Scholar 

  • Fusco G, Artale V, Cotroneo Y, et al (2008) Thermohaline variability of Mediterranean water in the Gulf of Cadiz, 1948–1999. Deep-Sea Res Part 1 Oceanogr Res Pap 55:1624–1638

    Article  Google Scholar 

  • Goes S, Giardini D, Jenny S, et al (2004) A recent tectonic reorganization in the south-central Mediterranean. Earth Planet Sci Lett 226:335–345

    Article  CAS  Google Scholar 

  • Govers R (2009) Choking the Mediterranean to dehydration: the Messinian salinity crisis. Geology 37:167–170

    Article  Google Scholar 

  • Govers R, Wortel MJR (2005) Lithosphere tearing at STEP faults: response to edges of subduction zones. Earth Planet Sci Lett 236:505–523

    Article  CAS  Google Scholar 

  • Gutscher MA, Dominguez S, Westbrook GK, et al (2012) The Gibraltar subduction: a decade of new geophysical data. Tectonophysics 574-575:72–91

    Article  Google Scholar 

  • Hüsing SK, Zachariasse WJ, van Hinsbergen DJJ, et al (2009) Oligocene-Miocene basin evolution in SE Anatolia: constraints on the closure of the eastern Tethys gateway. Geol Soc Lond Spec Publ 311:107–132

    Article  Google Scholar 

  • Jolivet L, Faccenna C (2000) Mediterranean extension and the Africa-Eurasia collision. Tectonics 19:1095–1106

    Article  Google Scholar 

  • Lionello P, Abrantes F, Congedi L, et al (2012) Introduction: Mediterranean climate—background information. In: Lionello P (ed) The climate of the Mediterranean region: from the past to the future. Elsevier, pp xxxv–xc

    Google Scholar 

  • Meijer PT (2012) Hydraulic theory of sea straits applied to the onset of the Messinian salinity crisis. Mar Geol 326–328:131–139

    Article  Google Scholar 

  • Mienis F, de Stigter HC, White M, et al (2007) Hydrodynamic controls on cold-water coral growth and carbonate-mound development at the SW and SE Rockall Trough Margin, NE Atlantic Ocean. Deep-Sea Res Part 1 Oceanogr Res Pap 54:1655–1674

    Article  Google Scholar 

  • Nocquet JM (2012) Present-day kinematics of the Mediterranean: a comprehensive overview of GPS results. Tectonophysics 579:220–242

    Article  Google Scholar 

  • Okay AI, Zattin M, Cavazza W (2010) Apatite fission track data for the Miocene Arabia-Eurasia collision. Geology 38:35–38

    Article  Google Scholar 

  • Oktay FY, Gökasan E, Sakinc M, et al (2002) The effects of the North Anatolian Fault Zone on the latest connection between Black Sea and Sea of Marmara. Mar Geol 190:367–382

    Article  Google Scholar 

  • Özbakir AD, Şengör AMC, Wortel MJR, et al (2013) The Pliny – Strabo trench region: a large shear zone resulting from slab tearing. Earth Planet Sci Lett 37:188–195

    Article  Google Scholar 

  • Palcu DV, Tulbure M, Bartol M, et al (2015) The Badenian-Sarmatian extinction event in the Carpathian foredeep basin of Romania: paleogeographic changes in the paratethys domain. Glob Planet Chang 133:346–358

    Article  Google Scholar 

  • Polonia A, Torelli L, Artoni A, et al (2016) The Ionian and Alfeo-Etna fault zones: new segments of an evolving plate boundary in the central Mediterranean Sea? Tectonophysics 675:69–90

    Article  Google Scholar 

  • Reilinger R, McClusky S (2011) Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophys J Int 186:971–979

    Article  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547

    Article  CAS  Google Scholar 

  • Roberts JM, Wheeler A, Freiwald A, et al (2009) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, New York, p 334. https://doi.org/10.1017/CBO9780511581588

  • Rogerson M, Colmenero-Hidalgo E, Levine RC, et al (2010) Enhanced Mediterranean-Atlantic exchange during Atlantic freshening phases. Geochem Geophys Geosyst 11:Q08013. https://doi.org/10.1029/2009GC002931

    Article  Google Scholar 

  • Rogerson M, Rohling EJ, Bigg GR, et al (2012) Paleoceanography of the Atlantic- Mediterranean exchange: overview and first quantitative assessment of climatic forcing. Rev Geophys 50:RG2003. https://doi.org/10.1029/2011RG000376

    Article  Google Scholar 

  • Schmittbuhl J, Karabulut H, Lenglin O, et al (2016) Seismicity distribution and locking depth along the Main Marmara Fault, Turkey. Geochem Geophys Geosyst 17:954–965. https://doi.org/10.1002/2015GC006120

    Article  Google Scholar 

  • Simon D, Meijer P (2015) Dimensions of the Atlantic-Mediterranean connection that caused the Messinian Salinity Crisis. Mar Geol 364:53–64

    Article  Google Scholar 

  • Smith JE, Schwarcz HO, Risk MJ, et al (2000) Paleo temperatures from deep-sea corals: overcoming “vital effects”. Palaios 15:25–32

    Article  Google Scholar 

  • Spakman W, Wortel R (2004) A tomographic view on Western Mediterranean geodynamics. In: Cavazza W, Roure F, Spakman W, et al (eds) The TRANSMED Atlas: the Mediterranean region from crust to mantle. Springer, Berlin, Heidelberg, pp 31–52

    Chapter  Google Scholar 

  • Taviani M, Freiwald A, Zibrowius H (2005) Deep coral growth in the Mediterranean Sea: an overview. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 137–156

    Chapter  Google Scholar 

  • Taviani M, Angeletti L, Canese S, et al (2017) The “Sardinian cold-water province” in the context of the Mediterranean coral ecosystems. Deep-Sea Res Part 2 Top Stud Oceanogr 145:61–78

    Article  Google Scholar 

  • Titschack J, Freiwald A (2005) Growth, deposition and facies of Pleistocene bathyal coral communities from Rhodes, Greece. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 41–59

    Chapter  Google Scholar 

  • Titschack J, Bromley RG, Freiwald A (2005) Plio-Pleistocene cliff-bound, wedge-shaped, warm-temperate carbonate deposits from Rhodes (Greece): sedimentology and facies. Sediment Geol 180:29–56

    Article  Google Scholar 

  • Tracey DM, Rowden AA, Mackay KA, et al (2011) Habitat-forming cold-waters show affinity for seamounts in the New Zealand region. Mar Ecol Progr Ser 430:1–22

    Article  Google Scholar 

  • White M, Mohn C, de Stigter H, et al (2005) Deep-water coral development as a function of hydrodynamics and surface productivity around submarine banks of the Rockall Trough, NE Atlantic. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 503–514

    Chapter  Google Scholar 

  • Wortel MJR, Spakman W (2000) Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290:1910–1917

    Article  CAS  Google Scholar 

  • Zerbini S, Raicich F, Prati CM, et al (2017) Sea-level change in the Northern Mediterranean Sea from long-period tide gauge time series. Earth-Sci Rev 167:72–87

    Article  Google Scholar 

Cross References

  • Freiwald A (this volume) Messinian salinity crisis: what happened to cold-water corals?

    Google Scholar 

  • Hayes DR, Schroeder K, Poulain PM, et al (this volume) Review of the circulation and characteristics of intermediate water masses of the Mediterranean – implications for cold-water coral habitats

    Google Scholar 

  • Skliris N (this volume) The Mediterranean is getting saltier: from the past to the future

    Google Scholar 

  • Taviani M, Vertino A, Angeletti L, et al (this volume) Paleoecology of Mediterranean cold-water corals

    Google Scholar 

  • Titschack J (this volume) Bathyal corals within the Aegean Sea and the adjacent Hellenic trench

    Google Scholar 

Download references

Acknowledgements

The authors thank Claudio Lo Iacono, two anonymous reviewers and the editors for their constructive comments, which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinus Wortel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wortel, R., Meijer, P. (2019). 41 The Interface Between Tectonic Evolution and Cold-Water Coral Dynamics in the Mediterranean. In: Orejas, C., Jiménez, C. (eds) Mediterranean Cold-Water Corals: Past, Present and Future. Coral Reefs of the World, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-91608-8_41

Download citation

Publish with us

Policies and ethics