Skip to main content

Physiology of the Cerebrovascular System

  • Chapter
  • First Online:
Book cover Extracranial Carotid and Vertebral Artery Disease

Abstract

The brain can withstand only very short periods of ischemia because neurons produce ATP almost entirely by oxidative metabolism. Without oxygen, energy-dependent processes stop causing irreversible cellular injury. Therefore, cerebral blood flow must be maintained to ensure oxygen delivery and removal of the products of metabolism. The regulation of the cerebral circulation is an intricate and critical process that relies on the complex and interacting influences of the cardiovascular, respiratory, neural, and local metabolic systems. These physiologic systems act in complex and interacting ways to maintain an adequate cerebral blood flow by altering arterial, intracranial, and venous pressures. This is achieved by multiple mechanisms. For example, cerebral autoregulation is the response of the cerebral vessels to changes in arterial blood pressure. It is well documented that a decrease in systemic arterial blood pressure causes dilatation of the cerebral vessels and that, conversely, an increase in systemic arterial blood pressure causes vasoconstriction of the cerebral circulation. Changes in cerebral vascular tone are also mediated by putative constricting and dilating substances, and cerebral blood flow is tightly coupled with regional brain metabolism. These vasoactive substances may be supplied to the vessels via the bloodstream [e.g., arterial partial pressure of carbon dioxide (PaCO2), produced locally (adenosine, nitric oxide, potassium), or reach the vascular smooth muscle through direct autonomic innervation (acetylcholine, norepinephrine)]. Unique anatomical features, including the rigid skull, are also important considerations in the control of cerebral blood flow. In this chapter, we briefly discuss the major factors regulating cerebral blood flow including important anatomical features for a functional understanding of the regulation of the cerebral circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiggers C. On the action of adrenaline on cerebral vessels. Am J Phys. 1905;14:452–65.

    CAS  Google Scholar 

  2. Bevan J. Sites of transition between functional systemic and cerebral arteries or rabbits occur at embryological junctional sites. Science. 1979;204:635–7.

    Article  CAS  Google Scholar 

  3. Dunning H, Wolff H. The relative vascularity of various parts of the central and peripheral nervous system in the cat and its relation to function. J Comp Neurol. 1937;67:280–6.

    Article  Google Scholar 

  4. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28(5):897–916.

    Article  CAS  Google Scholar 

  5. Nakagawa Y, Tsuru M, Yada K. Site and mechanism for compression of the venous system during experimental intracranial hypertension. J Neurosurg. 1974;41(4):427–34.

    Article  CAS  Google Scholar 

  6. Piechnik SK, Czosnyka M, Richards HK, Whitfield PC, Pickard JD. Cerebral venous blood outflow: a theoretical model based on laboratory simulation. Neurosurgery. 2001;49(5):1214–22.

    CAS  PubMed  Google Scholar 

  7. Ursino M, Lodi CA. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J Appl Physiol. 1997;82(4):1256–69.

    Article  CAS  Google Scholar 

  8. Czosnyka M, Piechnik S, Richards HK, Kirkpatrick P, Smielewski P, Pickard JD. Contribution of mathematical modelling to the interpretation of bedside tests of cerebrovascular autoregulation. J Neurol Neurosurg Psychiatry. 1997;63(6):721–31.

    Article  CAS  Google Scholar 

  9. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010;468(7321):232–43.

    Article  CAS  Google Scholar 

  10. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508(7494):55–60.

    Article  CAS  Google Scholar 

  11. Willie CK, Tzeng YC, Fisher JA, Ainslie PN. Integrative regulation of human brain blood flow. J Physiol. 2014;592(5):841–59.

    Article  CAS  Google Scholar 

  12. Schaller B. Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Res Brain Res Rev. 2004;46(3):243–60.

    Article  CAS  Google Scholar 

  13. Lee SP, Duong TQ, Yang G, Iadecola C, Kim SG. Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: implications for BOLD fMRI. Magn Reson Med. 2001;45(5):791–800.

    Article  CAS  Google Scholar 

  14. Rosenblum WI. Endothelium-derived relaxing factor in brain blood vessels is not nitric oxide. Stroke. 1992;23(10):1527–32.

    Article  CAS  Google Scholar 

  15. Menon D. Cerebral circulation. In: Priebe H-J, Sharvans K, editors. Cardiovascular physiology. London: BMJ Publishing Group; 1995. p. 198–223.

    Google Scholar 

  16. Berntman L, Carlsson C, Siesjo BK. Influence of propranolol on cerebral metabolism and blood flow in the rat brain. Brain Res. 1978;151(1):220–4.

    Article  CAS  Google Scholar 

  17. Berntman L, Carlsson C, Siesjo BK. Cerebral oxygen consumption and blood flow in hypoxia: influence of sympathoadrenal activation. Stroke. 1979;10(1):20–5.

    Article  CAS  Google Scholar 

  18. Edvinsson L, Sercombe R. Influence of pH and pCO2 on alpha-receptor mediated contraction in brain vessels. Acta Physiol Scand. 1976;97(3):325–31.

    Article  CAS  Google Scholar 

  19. Pickard J, Simeone F, Vinall P. In: Betsz E, editor. H+, CO2, prostaglndins and cerebrovascular smooth muscle. Berlin: Springer-Verlag; 1976.

    Google Scholar 

  20. Busija DW, Heistad DD. Effects of cholinergic nerves on cerebral blood flow in cats. Circ Res. 1981;48(1):62–9.

    Article  CAS  Google Scholar 

  21. Heistad DD, Marcus ML, Ehrhardt JC, Abboud FM. Effect of stimulation of carotid chemoreceptors on total and regional cerebral blood flow. Circ Res. 1976;38(1):20–5.

    Article  CAS  Google Scholar 

  22. Ainslie PN, Duffin J. Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Physiol Regul Integr Comp Physiol. 2009;296(5):R1473–95.

    Article  CAS  Google Scholar 

  23. Lassen N. In: Sutton J, Jones N, Houston C, editors. The brain: cerebral blood flow. New York: Thieme-Stratton; 1982.

    Google Scholar 

  24. Strandgaard S, Sigurdsson ST. Point: counterpoint: sympathetic activity does/does not influence cerebral blood flow. Counterpoint: sympathetic nerve activity does not influence cerebral blood flow. J Appl Physiol (1985). 2008;105(4):1366–7.

    Article  Google Scholar 

  25. van Lieshout JJ, Secher NH. Point: counterpoint: sympathetic activity does/does not influence cerebral blood flow. Point: sympathetic activity does influence cerebral blood flow. J Appl Physiol (1985). 2008;105(4):1364–6.

    Article  Google Scholar 

  26. Visocchi M, Chiappini F, Cioni B, Meglio M. Cerebral blood flow velocities and trigeminal ganglion stimulation. A transcranial Doppler study. Stereotact Funct Neurosurg. 1996;66(4):184–92.

    Article  CAS  Google Scholar 

  27. Umeyama T, Kugimiya T, Ogawa T, Kandori Y, Ishizuka A, Hanaoka K. Changes in cerebral blood flow estimated after stellate ganglion block by single photon emission computed tomography. J Auton Nerv Syst. 1995;50(3):339–46.

    Article  CAS  Google Scholar 

  28. Iwayama T, Furness JB, Burnstock G. Dual adrenergic and cholinergic innervation of the cerebral arteries of the rat. An ultrastructural study. Circ Res. 1970;26(5):635–46.

    Article  CAS  Google Scholar 

  29. Nielsen KC, Owman C. Adrenergic innervation of pial arteries related to the circle of Willis in the cat. Brain Res. 1967;6(4):773–6.

    Article  CAS  Google Scholar 

  30. Heistad DD, Marcus ML. Evidence that neural mechanisms do not have important effects on cerebral blood flow. Circ Res. 1978;42(3):295–302.

    Article  CAS  Google Scholar 

  31. Purves MJ. Do vasomotor nerves significantly regulate cerebral blood flow? Circ Res. 1978;43(4):485–93.

    Article  CAS  Google Scholar 

  32. Owman C, Edvinsson L, Nielsen KC. Autonomic neuroreceptor mechanisms in brain vessels. Blood Vessels. 1974;11(1-2):2–31.

    CAS  PubMed  Google Scholar 

  33. Duckles SP, Bevan JA. Pharmacological characterization of adrenergic receptors of a rabbit cerebral artery in vitro. J Pharmacol Exp Ther. 1976;197(2):371–8.

    CAS  PubMed  Google Scholar 

  34. Edvinsson L, MacKenzie ET. Amine mechanisms in the cerebral circulation. Pharmacol Rev. 1976;28(4):275–348.

    CAS  PubMed  Google Scholar 

  35. Toda N, Fujita Y. Responsiveness of isolated cerebral and peripheral arteries to serotonin, norepinephrine, and transmural electrical stimulation. Circ Res. 1973;33(1):98–104.

    Article  CAS  Google Scholar 

  36. Lee TJ, Su C, Bevan JA. Neurogenic sympathetic vasoconstriction of the rabbit basilar artery. Circ Res. 1976;39(1):120–6.

    Article  CAS  Google Scholar 

  37. Navari RM, Wei EP, Kontos HA, Patterson JL Jr. Comparison of the open skull and cranial window preparations in the study of the cerebral microcirculation. Microvasc Res. 1978;16(3):304–15.

    Article  CAS  Google Scholar 

  38. Oldendorf WH. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Phys. 1971;221(6):1629–39.

    CAS  Google Scholar 

  39. Tindall GT, Greenfield JC Jr. The effects of intra-arterial histamine on blood flow in the internal and external carotid artery of man. Stroke. 1973;4(1):46–9.

    Article  CAS  Google Scholar 

  40. MacKenzie ET, McCulloch J, O’Kean M, Pickard JD, Harper AM. Cerebral circulation and norepinephrine: relevance of the blood-brain barrier. Am J Phys. 1976;231(2):483–8.

    CAS  Google Scholar 

  41. Bill A, Linder J. Sympathetic control of cerebral blood flow in acute arterial hypertension. Acta Physiol Scand. 1976;96(1):114–21.

    Article  CAS  Google Scholar 

  42. Edvinsson L, Owman C, Siesjo B. Physiological role of cerebrovascular sympathetic nerves in the autoregulation of cerebral blood flow. Brain Res. 1976;117(3):519–23.

    Article  CAS  Google Scholar 

  43. Heistad DD, Marcus ML. Effect of sympathetic stimulation on permeability of the blood-brain barrier to albumin during acute hypertension in cats. Circ Res. 1979;45(3):331–8.

    Article  CAS  Google Scholar 

  44. Heistad DD, Marcus ML, Gross PM. Effects of sympathetic nerves on cerebral vessels in dog, cat, and monkey. Am J Phys. 1978;235(5):H544–52.

    CAS  Google Scholar 

  45. MacKenzie ET, McGeorge AP, Graham DI, Fitch W, Edvinsson L, Harper AM. Effects of increasing arterial pressure on cerebral blood flow in the baboon: influence of the sympathetic nervous system. Pflugers Arch. 1979;378(3):189–95.

    Article  CAS  Google Scholar 

  46. Lindvall M, Edvinsson L, Owman C. Sympathetic nervous control of cerebrospinal fluid production from the choroid plexus. Science. 1978;201(4351):176–8.

    Article  CAS  Google Scholar 

  47. Johansson B, Li CL, Olsson Y, Klatzo I. The effect of acute arterial hypertension on the blood-brain barrier to protein tracers. Acta Neuropathol. 1970;16(2):117–24.

    Article  CAS  Google Scholar 

  48. Hart MN, Heistad DD, Brody MJ. Effect of chronic hypertension and sympathetic denervation on wall/lumen ratio of cerebral vessels. Hypertension. 1980;2(4):419–23.

    Article  CAS  Google Scholar 

  49. Larsson LI, Edvinsson L, Fahrenkrug J, Hakanson R, Owman C, Schaffalitzky de Muckadell O, et al. Immunohistochemical localization of a vasodilatory polypeptide (VIP) in cerebrovascular nerves. Brain Res. 1976;113(2):400–4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen E. DiCarlo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lujan, H.L., Augustyniak, R.A., DiCarlo, S.E. (2018). Physiology of the Cerebrovascular System. In: Hans, S. (eds) Extracranial Carotid and Vertebral Artery Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-91533-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91533-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91532-6

  • Online ISBN: 978-3-319-91533-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics