Skip to main content

Learning Distribution-Matched Landmarks for Unsupervised Domain Adaptation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10828))

Abstract

Domain adaptation is widely used in database applications, especially in data mining. The basic assumption of domain adaptation (DA) is that some latent factors are shared by the source domain and the target domain. Revealing these shared factors, as a result, is the core operation of many DA approaches. This paper proposes a novel approach, named Learning Distribution-Matched Landmarks (LDML), for unsupervised DA. LDML reveals the latent factors by learning a domain-invariant subspace where the two domains are well aligned at both feature level and sample level. At the feature level, the divergences of both the marginal distribution and the conditional distribution are mitigated. At the sample level, each sample is evaluated so that we can take full advantage of the pivotal samples and filter out the outliers. Extensive experiments on two standard benchmarks verify that our approach can outperform state-of-the-art methods with significant advantages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aljundi, R., Emonet, R., Muselet, D., Sebban, M.: Landmarks-based kernelized subspace alignment for unsupervised domain adaptation. In: CVPR, pp. 56–63 (2015)

    Google Scholar 

  2. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM TIST 2(3), 27 (2011)

    Google Scholar 

  3. Chattopadhyay, R., Sun, Q., Fan, W., Davidson, I., Panchanathan, S., Ye, J.: Multisource domain adaptation and its application to early detection of fatigue. KDD 6(4), 18 (2012)

    Google Scholar 

  4. Chen, H.T., Chang, H.W., Liu, T.L.: Local discriminant embedding and its variants. In: CVPR, vol. 2, pp. 846–853. IEEE (2005)

    Google Scholar 

  5. Ding, Z., Shao, M., Fu, Y.: Deep low-rank coding for transfer learning. In: IJCAI, pp. 3453–3459 (2015)

    Google Scholar 

  6. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: ICML, pp. 647–655 (2014)

    Google Scholar 

  7. Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual domain adaptation using subspace alignment. In: ICCV, pp. 2960–2967 (2013)

    Google Scholar 

  8. Ghifary, M., Balduzzi, D., Kleijn, W.B., Zhang, M.: Scatter component analysis: a unified framework for domain adaptation and domain generalization. IEEE TPAMI 39(7), 1414–1430 (2016)

    Article  Google Scholar 

  9. Gong, B., Grauman, K., Sha, F.: Connecting the dots with landmarks: discriminatively learning domain-invariant features for unsupervised domain adaptation. In: ICML, pp. 222–230 (2013)

    Google Scholar 

  10. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: CVPR, pp. 2066–2073. IEEE (2012)

    Google Scholar 

  11. Gopalan, R., Li, R., Chellappa, R.: Domain adaptation for object recognition: an unsupervised approach. In: ICCV, pp. 999–1006. IEEE (2011)

    Google Scholar 

  12. Gretton, A., Borgwardt, K.M., Rasch, M., Schölkopf, B., Smola, A.J.: A kernel method for the two-sample-problem. In: NIPS, pp. 513–520 (2007)

    Google Scholar 

  13. Griffin, G., Holub, A., Perona, P.: Caltech-256 Object Category Dataset (2007)

    Google Scholar 

  14. Gu, Q., Li, Z., Han, J.: Joint feature selection and subspace learning. In: IJCAI, vol. 22, p. 1294 (2011)

    Google Scholar 

  15. Hubert Tsai, Y.H., Yeh, Y.R., Frank Wang, Y.C.: Learning cross-domain landmarks for heterogeneous domain adaptation. In: CVPR, pp. 5081–5090 (2016)

    Google Scholar 

  16. Li, J., Lu, K., Huang, Z., Shen, H.T.: Two birds one stone: on both cold-start and long-tail recommendation. In: ACM Multimedia, pp. 898–906. ACM (2017)

    Google Scholar 

  17. Li, J., Lu, K., Zhu, L., Li, Z.: Locality-constrained transfer coding for heterogeneous domain adaptation. In: Huang, Z., Xiao, X., Cao, X. (eds.) ADC 2017. LNCS, vol. 10538, pp. 193–204. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68155-9_15

    Chapter  Google Scholar 

  18. Li, J., Wu, Y., Zhao, J., Lu, K.: Low-rank discriminant embedding for multiview learning. IEEE TCYB 47(11), 3516–3529 (2017)

    Google Scholar 

  19. Li, J., Zhao, J., Lu, K.: Joint feature selection and structure preservation for domain adaptation. In: IJCAI, pp. 1697–1703 (2016)

    Google Scholar 

  20. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer feature learning with joint distribution adaptation. In: ICCV, pp. 2200–2207 (2013)

    Google Scholar 

  21. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer joint matching for unsupervised domain adaptation. In: CVPR, pp. 1410–1417 (2014)

    Google Scholar 

  22. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE TNN 22(2), 199–210 (2011)

    Google Scholar 

  23. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE TKDE 22(10), 1345–1359 (2010)

    Google Scholar 

  24. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  25. Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (PIE) database. In: FG, pp. 53–58. IEEE (2002)

    Google Scholar 

  26. Sugiyama, M.: Local fisher discriminant analysis for supervised dimensionality reduction. In: ICML, pp. 905–912. ACM (2006)

    Google Scholar 

  27. Yan, S., Xu, D., Zhang, B., Zhang, H.J., Yang, Q., Lin, S.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE TPAMI 29(1), 40–51 (2007)

    Article  Google Scholar 

  28. Zhang, J., Li, W., Ogunbona, P.: Joint geometrical and statistical alignment for visual domain adaptation. In: CVPR (2017)

    Google Scholar 

  29. Zhou, M., Chang, K.C.: Unifying learning to rank and domain adaptation: enabling cross-task document scoring. In: SIGKDD, pp. 781–790. ACM (2014)

    Google Scholar 

  30. Zhu, L., Shen, J., Jin, H., Zheng, R., Xie, L.: Content-based visual landmark search via multimodal hypergraph learning. IEEE TCYB 45(12), 2756–2769 (2015)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Postdoctoral Program for Innovative Talents under Grant BX201700045, China Postdoctoral Science Foundation under Grant 2017M623006, the Applied Basic Research Program of Sichuan Province under Grant 2015JY0124, and the Fundamental Research Funds for the Central Universities under Grant ZYGX2016J089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jing, M., Li, J., Zhao, J., Lu, K. (2018). Learning Distribution-Matched Landmarks for Unsupervised Domain Adaptation. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds) Database Systems for Advanced Applications. DASFAA 2018. Lecture Notes in Computer Science(), vol 10828. Springer, Cham. https://doi.org/10.1007/978-3-319-91458-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91458-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91457-2

  • Online ISBN: 978-3-319-91458-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics