Skip to main content

Larotrectinib (LOXO-101)

  • Chapter
  • First Online:
Book cover Small Molecules in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 211))

Abstract

One of the most challenging issues in oncology research and treatment is identifying oncogenic drivers within an individual patient’s tumor which can be directly targeted by a clinically available therapeutic drug. In this context, gene fusions as one important example of genetic aberrations leading to carcinogenesis follow the widely accepted concept that cell growth and proliferation are driven by the accomplished fusion (usually involving former proto-oncogenes) and may therefore be successfully inhibited by substances directed against the fusion. This concept has already been established with oncogenic gene fusions like BCR-ABL in chronic myelogenous leukemia (CML) or anaplastic lymphoma kinase (ALK) in lung cancer, including special tyrosine kinase inhibitors (TKIs) which are able to block the activation of the depending downstream proliferation pathways and, consequently, tumor growth. During the last decade, the NTRK1, 2, and 3 genes, encoding the TRKA, B, and C proteins, have attracted increasing attention as another significant and targetable gene fusion in a variety of cancers. Several TRK inhibitors have been developed, and one of them, Larotrectinib (formerly known as LOXO-101), represents an orally available, selective inhibitor of the TRK receptor family that has already shown substantial clinical benefit in both pediatric and adult patients harboring an NTRK gene fusion over the last few years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ardini E, Bosotti R, Borgia A, De Ponti C et al (2014) The TPM3-NTRK1 rearrangement is a recurring event in colorectal carcinoma and is associated with tumor sensitivity to TRKA kinase inhibition. Mol Oncol 8:1495–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bollig-Fischer A, Michelhaugh S et al (2015) Cytogenomic profiling of breast cancer brain metastases reveals potential for repurposing targeted therapeutics. Oncotarget 6(16):14614–14624

    Article  PubMed  PubMed Central  Google Scholar 

  • Burris H, Hong D, Shaw A, Doebele R, Bauer T et al (2015a) Pharmacokinetics (PK) of LOXO-101 during the first-in-human phase I study in patients with advanced solid tumors—interim update. Poster, presented at the AACR annual meeting 2015, Pennsylvania

    Google Scholar 

  • Burris H, Brose M, Shaw A et al (2015b) A first-in-human study of LOXO-101, a highly selective inhibitor of the tropomyosin receptor kinase (TRK) family. J Clin Oncol 33(suppl): abstract TPS2624

    Google Scholar 

  • Califano R, Abidin A, Tariq N et al (2015) Beyond EGFR and ALK inhibition: unravelling and exploiting novel genetic alternations in advanced non small-cell lung cancer. Cancer Treat Rev 41(5):401–411

    Article  CAS  PubMed  Google Scholar 

  • Chao M (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4(4):299–309

    Article  CAS  PubMed  Google Scholar 

  • Coppola V, Barrick C, Southon E, Celeste A et al (2004) Ablation of TrkA function in the immune system causes B cell abnormalities. Development 131:5185–5195

    Article  CAS  PubMed  Google Scholar 

  • Doebele R, Davis L, Vaishnavi A, Le A, Estrada-Bernal et al (2015) An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101. Cancer Discov 5:1049–1057

    Google Scholar 

  • Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22

    Article  CAS  PubMed  Google Scholar 

  • Drilon A, Nagasubramanian R, Blake J, Ku N et al (2017) A next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion-positive solid tumors. Cancer Discov 7:963–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farago A, Le L, Zheng Z, Muzikansky A, Drilon A et al (2015) Durable clinical response to entrectinib in NTRK1-rearranged non-small cell lung cancer. J Thorac Oncol 10:1670–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frattini V, Trifonov V, Chan J et al (2013) The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet 45:1141–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Aksoy B et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1

    Google Scholar 

  • Hong D, Brose M, Doebele R, Shaw A et al (2015) Clinical safety and activity from a phase 1 study of LOXO-101, a selective TRKA/B/C inhibitor, in solid-tumor patients with NTRK gene fusions. Mol Cancer Ther 14(12 Suppl2): abstract nr PR 13

    Google Scholar 

  • Hong D, Farago A, Brose M et al (2016) Clinical safety and activity from a phase 1 study of LOXO-101, a selective TRKA/B/C inhibitor, in solid-tumor patients with NTRK gene fusions. American Association for Cancer Research 2016 annual meeting

    Google Scholar 

  • Hyman DM et al (2017) The efficacy of larotrectinib (LOXO-101), a selective tropomyosin receptor kinase (TKR) inhibitor, in adult and pediatric TRK fusion cancers. In: Proceedings from the 2017 ASCO annual meeting, Chicago, Illinois, 2–6 June 2017. Abstract LBA2501, J Clin Oncol 35(suppl)

    Google Scholar 

  • Kaplan D, Martin-Zanca D, Parad L (1991) Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature 350:158–160

    Article  CAS  PubMed  Google Scholar 

  • Khotskaya Y, Vijaykumar R, Farago A, Mills Shaw K, Merci-Bernstam F, Hong D (2017) Targeting TRK family proteins in cancer. Pharmacol Ther 173:58–66

    Article  CAS  PubMed  Google Scholar 

  • Klein R, Jing S, Nanduri V, Barbacid M (1991) The trk proto-oncogene encodes a receptor for nerve growth factor. Cell 65:189–197

    Article  CAS  PubMed  Google Scholar 

  • Knezevich S, McFadden D, Tao W, Lim J, Sorensen P (1998) A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 18:184–187

    Article  CAS  PubMed  Google Scholar 

  • Laetsch T et al (2017) A pediatric phase I study of larotrectinib, a highly selective inhibitor of the tropomyosin receptor kinase (TRK) family. In: Proceedings from the 2017 ASCO annual meeting, Chicago, Illinois, 2–6 June 2017. Abstract 10510

    Google Scholar 

  • Martin-Zanca D, Hughes S, Barbacid M (1986) A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature 319:743–748

    Article  CAS  PubMed  Google Scholar 

  • Miranda C, Mazzoni M, Sensi M, Pierotti M, Greco A (2014) Functional characterization of NTRK1 mutations identified in melanoma. Genes Chromosom Cancer 53:875–880

    Article  CAS  PubMed  Google Scholar 

  • Nagasubramanian R, Wei J, Gordon P, Rastatter J, Cox M, Pappo A (2016) Infantile fibrosarcoma with NTRK3-ETV6 fusion successfully treated with the tropomyosin-related kinase inhibitor LOXO-101. Pediatr Blood Cancer 63:1468–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okimoto R, Bivona T (2016) Tracking down response and resistance to TRK inhibitors. Cancer Discov 6:14–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricciuti B, Brambilla M, Metro G, Baglivo S, Matocci R, Pirro M, Chiari R (2017) Targeting NTRK fusion in non-small cell lung cancer: rationale and clinical evidence. Med Oncol 34:105

    Article  CAS  PubMed  Google Scholar 

  • Roccato E, Miranda C, Ranzi V, Gishizki M, Pierotti M, Greco A (2002) Biological activity of the thyroid TRK-T3 oncogene requires signalling through Shc. Br J Cancer 87:645–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross J, Wang K, Gay L, Al-Rohil R, Rand J, Jones D et al (2014) New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist 19:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubin J, Segal R (2003) Growth, survival and migration: the Trk to cancer. Cancer Treat Res 115:1–18

    PubMed  CAS  Google Scholar 

  • Shukla N, Roberts S, Baki M, Mushtaq Q, Goss P et al (2017) Successful targeted therapy of refractory pediatric ETV6-NTRK3 fusion-positive secretory breast carcinoma. JCO Precis Oncol, published online, ascopubs.org/journal/po

    Google Scholar 

  • Snider W (1994) Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 77:627–638

    Article  PubMed  Google Scholar 

  • Soda M, Choi Y, Enomoto M et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566

    Article  CAS  PubMed  Google Scholar 

  • Stransky N, Cerami E, Schalm S, Kim J, Lengauer C (2014) The landscape of kinase fusions in cancer. Nat Commun 5:4846

    Article  CAS  PubMed  Google Scholar 

  • Tacconelli A, Farina A, Cappabianca L, Desantis G, Tessitore A, Vetuschi A et al (2004) TrkA alternative splicing: a regulated tumor-promoting switch in human neuroblastoma. Cancer Cell 6:347–360

    Article  CAS  PubMed  Google Scholar 

  • Tognon C, Knezevich S, Huntsman D (2002) Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2:367–376

    Article  CAS  PubMed  Google Scholar 

  • Vaishnavi A, Capelletti M, Le A, Kako S, Butaney M et al (2013) Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med 19(11):1469–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaishnavi A, Le A, Doebele R (2015) TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov 5:25–34

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Berger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berger, S., Martens, U.M., Bochum, S. (2018). Larotrectinib (LOXO-101). In: Martens, U. (eds) Small Molecules in Oncology. Recent Results in Cancer Research, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-91442-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91442-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91441-1

  • Online ISBN: 978-3-319-91442-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics