Skip to main content

Nuclear Magnetic Resonance

  • Chapter
  • First Online:
Plant Structural Biology: Hormonal Regulations

Abstract

Application of nuclear magnetic resonance (NMR) in protein studies is briefly described. The basic physical principles of the method are introduced, and relation of NMR spectra to chemical structure is explained. The basic technique of isotope labeling is presented, and recommendations for sample preparations are reviewed. The methods used for assignment of NMR spectra, structure determinations, investigation of intermolecular interactions, and monitoring molecular motions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A promising possibility of improving the sensitivity is dynamic nuclear polarization, taking advantage of a much larger difference between the energies of magnetic moments of unpaired electrons.

  2. 2.

    In practice, the correlation with the carbons of the preceding amino acid is often observed too because the one-bond and two-bond 15N-13Cα interactions are of similar strength.

References

  • Anglister J, Srivastava G, Naider F (2016) Detection of intermolecular NOE interactions in large protein complexes. Prog Nucl Magn Reson Spectrosc 97:40–56

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya A, Tejero R, Montelione GT (2007) Evaluating protein structures determined by structural genomics consortia. Proteins 66(4):778–795

    Article  CAS  PubMed  Google Scholar 

  • Briggman KB, Tolman JR (2003) De novo determination of bond orientations and order parameters from residual dipolar couplings with high accuracy. J Am Chem Soc 125(34):10164–10165

    Article  CAS  PubMed  Google Scholar 

  • Brunger AT, Adams PD, Clore GM, Gros P, Grosse-Kunstleve RW, Jiang J, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system (CNS), a new software suite for macromolecular structure determination. Acta Cryst D54:905–921

    CAS  Google Scholar 

  • Buevich AV, Baum J (1999) Dynamics of unfolded proteins: incorporation of distributions of correlation times in the model free analysis of NMR relaxation data. J Am Chem Soc 121:8671–8672

    Google Scholar 

  • Camilloni C, De Simone A, Vranken WF, Vendruscolo M (2012) Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts. Biochemistry 51(11):2224–2231

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh J, Skelton NJ, Fairbrother WJ, Rance M, Palmer AG (2007) Protein NMR spectroscopy: principles and practice, 2nd edn. Academic Press, Cambridge

    Google Scholar 

  • Cheung M, Maguire ML, Stevens TJ, Broadhurst RW (2010) DANGLE: a Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure. J Magn Reson 202(2):223–233

    Article  CAS  PubMed  Google Scholar 

  • Coggins BE, Werner-Allen JW, Yan A, Zhou P (2012) Rapid protein global fold determination using Ultrasparse sampling, high-dynamic range artifact suppression, and time-shared NOESY. J Am Chem Soc 134:18619–18630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crespi HL, Rosenberg RM, Katz JL (1968) Proton magnetic resonance of proteins fully deuterated except for H-leucine side chains. Science 161:795–796

    Article  CAS  PubMed  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  CAS  PubMed  Google Scholar 

  • Dodevski I, Nucci NV, Valentine KG, Sidhu GK, O’Brien ES, Pardi A, Wand AJ (2014) Optimized reverse micelle surfactant system for high-resolution NMR spectroscopy of encapsulated proteins and nucleic acids dissolved in low viscosity fluids. J Am Chem Soc 136(9):3465–3474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doreleijers JF, Sousa da Silva AW, Krieger E, Nabuurs SB, Spronk CA, Stevens TJ, Vranken WF, Vriend G, Vuister GW (2012) CING: an integrated residue-based structure validation program suite. J Biomol NMR 54(3):267–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelke J, Rüterjans H (1999) Recent developments in studying the dynamics of protein structures from and 15N and 13C relaxation time measurements. In: Krishna NR, Berliner L (eds) Structure computation and dynamics in protein NMR. Kluwer Academic/Plenum, New York

    Google Scholar 

  • Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Oxford University Press, Oxford

    Google Scholar 

  • Fiaux J, Bertelsen EB, Horwich AL, Wüthrich K (2002) NMR analysis of a 900K GroEL–GroES complex. Nature 418:207–211

    Article  CAS  PubMed  Google Scholar 

  • Gossert AD, Jahnke W (2016) NMR in drug discovery: a practical guide to identification and validation of ligands interacting with biological macromolecules. Prog NMR Spectrosc 97:82–125

    Article  CAS  Google Scholar 

  • Gottstein D, Kirchner DK, Güntert P (2012) Simultaneous single-structure and bundle representation of protein NMR structures in torsion angle space. J Biomol NMR 52(4):351–364

    Article  CAS  PubMed  Google Scholar 

  • Güntert P, Buchner L (2015) Combined automated NOE assignment and structure calculation with CYANA. J Biomol NMR 62:453–471

    Article  CAS  PubMed  Google Scholar 

  • Hafsa NE, Arndt D, Wishart DS (2015) CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts. Nucleic Acids Res 43(W1):W370–W377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagn F, Etzkorn M, Raschle T, Wagner G (2013) Optimized phospholipid bilayer Nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135(5):1919–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319(1):209–227

    Article  CAS  PubMed  Google Scholar 

  • Hus JC, Salmon L, Bouvignies G, Lotze J, Blackledge M, Brüschweiler R (2008) 16-fold degeneracy of peptide plane orientations from residual dipolar couplings: analytical treatment and implications for protein structure determination. J Am Chem Soc 130(47):15927–15937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyberts SG, Milbradt AG, Wagner AB, Arthanari H, Wagner G (2012) Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson gap scheduling. J Biomol NMR 52(4):315–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishima R, Nagayama K (1995) Protein backbone dynamics revealed by quasi spectral density function analysis of amide N-15 nuclei. Biochemistry 34:31623171

    Article  Google Scholar 

  • Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Ono AM, Güntert P (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440:52–57

    Article  CAS  PubMed  Google Scholar 

  • Keeler J (2010) Understanding NMR spectroscopy, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  CAS  Google Scholar 

  • Korzhnev DM, Billeter M, Arseniev AS, Orekhov VY (2001) NMR studies of Brownian tumbling and internal motions in proteins. Prog NMR Spectrosc 38(3):197–266

    Article  CAS  Google Scholar 

  • Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8(4):477–486

    Article  CAS  PubMed  Google Scholar 

  • Levitt MH (2008) Spin dynamics: basics of nuclear magnetic resonance, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Marsh JA, Singh VK, Jia Z, Forman-Kay JD (2006) Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation. Protein Sci 15(12):2795–2804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meirovitch E, Shapiro YE, Polimeno A, Freed JH (2010) Structural dynamics of biomacromolecules by NMR: the slowly relaxing local structure approach. Prog Nucl Magn Reson Spectrosc 56:360405

    Article  CAS  Google Scholar 

  • Nováček J, Žídek L, Sklenář V (2014) Toward optimal-resolution NMR of intrinsically disordered proteins. J Magn Reson 241:41–52

    Article  CAS  PubMed  Google Scholar 

  • Ohki S, Takeuchi M, Mori M (2011) The NMR structure of stomagen reveals the basis of stomatal density regulation by plant peptide hormones. Nature Communications 2:512. https://doi.org/10.1038/ncomms150

  • Orekhov VY, Jaravine VA (2011) Analysis of non-uniformly sampled spectra with MultiDimensional decomposition. Prog Nucl Magn Reson Spectrosc 59:271–292

    Article  CAS  PubMed  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T 2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 94:12366–12371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Primrose WU (1993) Sample preparation. In: Roberts GCK (ed) NMR of macromolecules, a practical approach. Oxford University Press, Oxford

    Google Scholar 

  • Putter I, Barreto A, Markley JL, Jardetzky O (1969) Nuclear magnetic resonance studies of the structure and binding sites of enzymes, X. preparation of selectively deuterated analogs of staphylococcal nuclease. Biochemistry 64:1396–1403

    CAS  Google Scholar 

  • Riek R, Wider G, Pervushin K, Wüthrich K (1999) Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules. Proc Natl Acad Sci U S A 96(9):4918–4923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieping W, Habeck M, Bardiaux B, Bernard A, Malliavin TE, Nilges M (2007) ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23:381–382

    Article  CAS  PubMed  Google Scholar 

  • Rule GS, Hitchens TK (2006) Fundamentals of protein NMR spectroscopy. Springer, Dordrecht

    Google Scholar 

  • Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Magn Reson Spectrosc 34:93–158

    Article  CAS  Google Scholar 

  • Schwieters CD, Kuszewski J, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:66–74

    Article  Google Scholar 

  • Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci U S A 105(12):4685–4690

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanek J, Koźmiński W (2010) Iterative algorithm of discrete Fourier transform for processing randomly sampled NMR data sets. J Biomol NMR 47(1):65–77

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Gill M, Li Y, Huang M, Byrd RA (2015) Efficient and generalized processing of multidimensional NUS NMR data: the NESTA algorithm and comparison of regularization terms. J Biomol NMR 62(1):105–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tugarinov V, Kay LE (2003) Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J Am Chem Soc 125(45):13868–13878

    Article  CAS  PubMed  Google Scholar 

  • Vallurupalli P, Bouvignies G, Kay LE (2012) Studying “invisible” excited protein states in slow exchange with a major state conformation. J Am Chem Soc 134(19):8148–8161

    Article  CAS  PubMed  Google Scholar 

  • Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8(1):52–56. 29

    Article  CAS  PubMed  Google Scholar 

  • Wand AJ, Ehrhardt MR, Flynn PF (1998) High-resolution NMR of encapsulated proteins dissolved in low-viscosity fluids. Proc Natl Acad Sci U S A 95(26):15299–15302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson MP, Havel TF, Wüthrich K (1985) Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry. J Mol Biol 182(2):295–315

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Sykes BD, Richards FM (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol 222(2):311–333

    Article  CAS  PubMed  Google Scholar 

  • Worley B (2016) Convex accelerated maximum entropy reconstruction. J Magn Reson 265:90–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

  • Yadav DK, Lukavsky PJ (2016) NMR solution structure determination of large RNA-protein complexes. Prog Nucl Magn Reson Spectrosc 97:57–81

    Article  CAS  Google Scholar 

  • Yao J, Dyson HJ, Wright PE (1997) Chemical shift dispersion and secondary structure prediction in unfolded and partly folded proteins. FEBS Lett 419(2–3):285–289

    Article  PubMed  Google Scholar 

  • Ying J, Delaglio F, Torchia DA, Bax A (2016) Sparse multidimensional iterative Lineshape-enhanced (SMILE) reconstruction of both non-uniformly sampled and conventional NMR data. J Biomol NMR 68(2):101–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HY, van Ingen H (2016) Isotope-labeling strategies for solution NMR studies of macromolecular assemblies. Curr Opin Struct Biol 38:75–82

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Financial contribution made by the Ministry of Education, Youths, and Sports of the Czech Republic within special support paid from the National Programme for Sustainability II funds, project CEITEC 2020 (LQ1601), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukáš Žídek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zachrdla, M., Jaseňáková, Z., Žídek, L. (2018). Nuclear Magnetic Resonance. In: Hejátko, J., Hakoshima, T. (eds) Plant Structural Biology: Hormonal Regulations. Springer, Cham. https://doi.org/10.1007/978-3-319-91352-0_12

Download citation

Publish with us

Policies and ethics