Skip to main content

Cytokinin and Ethylene Signaling

  • Chapter
  • First Online:

Abstract

Cytokinins and ethylene belong to the group of “classical” plant growth regulators controlling a broad spectrum of developmental responses. Models for cytokinin and ethylene signal transduction have been established mainly in Arabidopsis, but the signaling pathways of both phytohormones are believed to be conserved throughout the plant kingdom. Nonetheless, in spite of several decades of intense research, our knowledge on basic principles driving signal recognition and transduction of both phytohormones is still delimited. Cytokinins and ethylene are recognized by proteins from the same family of sensor histidine kinases. However, the mechanism of signal transduction through the (plasma) membrane as well as the downstream members of both signaling cascades differ for cytokinins and ethylene. While cytokinins activate multistep phosphorelay signaling of bacterial origin, ethylene signal is perceived by a series of negative regulations mediated by redundant ethylene sensors and downstream Raf-like kinase.

Here, we provide an up-to-date overview of known structures and function–structure relationships of main components of cytokinin and ethylene signaling in Arabidopsis. We demonstrate how the knowledge deepens our understanding of molecular principles underlying signal recognition and transduction via both hormonal pathways while raising new questions that remain to be answered. Finally, we summarize the recently published evidence, providing mechanistic insights into the long suspected cytokinin/ethylene signaling crosstalk.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284(5423):2148–2152

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, Ausubel FM, Ecker JR (2003) Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci U S A 100(5):2992–2997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang C, Han Y, He W, Liu Y, Zhang S, Ecker JR, Guo H (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22(7):2384–2401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anantharaman V, Aravind L (2001) The CHASE domain: a predicted ligand-binding module in plant cytokinin receptors and other eukaryotic and bacterial receptors. Trends Biochem Sci 26(10):579–582

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Genome I (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815

    Article  Google Scholar 

  • Bae E, Bitto E, Bingman CA, Allard ST, Wesenberg GE, Wrobel RL, Fox BG, Phillips GN (2010) Crystal structure of a putative histidine-containing phosphotransfer protein from Oryza saliva. J Korean Soc Appl Biol Chem 53(6):852–856

    Article  CAS  Google Scholar 

  • Bauer J, Reiss K, Veerabagu M, Heunemann M, Harter K, Stehle T (2013) Structure-function analysis of Arabidopsis thaliana histidine kinase AHK5 bound to its cognate phosphotransfer protein AHP1. Mol Plant 6(3):959–970

    Article  PubMed  CAS  Google Scholar 

  • Bell CH, Porter SL, Strawson A, Stuart DI, Armitage JP (2010) Using structural information to change the phosphotransfer specificity of a two-component chemotaxis signalling complex. PLoS Biol 8(2):e1000306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Binder BM, O'Malley RC, Wang W, Moore JM, Parks BM, Spalding EP, Bleecker AB (2004) Arabidopsis seedling growth response and recovery to ethylene. A kinetic analysis. Plant Physiol 136(2):2913–2920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Binder BM, Walker JM, Gagne JM, Emborg TJ, Hemmann G, Bleecker AB, Vierstra RD (2007) The Arabidopsis EIN3 binding F-box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. Plant Cell 19(2):509–523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Binder BM, Chang C, Schaller GE (2012) Perceptione of ethylene by plants: ethylene receptors. In: McManus MT (ed) Annual plant reviews, the plant hormone ethylene, vol 44. Wiley-Blackwell, Oxford, pp 117–145

    Chapter  Google Scholar 

  • Bisson MM, Groth G (2010) New insight in ethylene signaling: autokinase activity of ETR1 modulates the interaction of receptors and EIN2. Mol Plant 3(5):882–889

    Article  PubMed  CAS  Google Scholar 

  • Bisson MM, Groth G (2011) New paradigm in ethylene signaling: EIN2, the central regulator of the signaling pathway, interacts directly with the upstream receptors. Plant Signal Behav 6(1):164–166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bisson MM, Bleckmann A, Allekotte S, Groth G (2009) EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochem J 424(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  PubMed  CAS  Google Scholar 

  • Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241(4869):1086–1089

    Article  PubMed  CAS  Google Scholar 

  • Bourret RB (2010) Receiver domain structure and function in response regulator proteins. Curr Opin Microbiol 13(2):142–149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caesar K, Thamm AM, Witthoft J, Elgass K, Huppenberger P, Grefen C, Horak J, Harter K (2011) Evidence for the localization of the Arabidopsis cytokinin receptors AHK3 and AHK4 in the endoplasmic reticulum. J Exp Bot 62(15):5571–5580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Capra EJ, Perchuk BS, Lubin EA, Ashenberg O, Skerker JM, Laub MT (2010) Systematic dissection and trajectory-scanning mutagenesis of the molecular Interface that ensures specificity of two-component signaling pathways. PLoS Genet 6(11):e1001220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Casino P, Rubio V, Marina A (2009) Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell 139(2):325–336

    Article  PubMed  CAS  Google Scholar 

  • Casino P, Miguel-Romero L, Marina A (2014) Visualizing autophosphorylation in histidine kinases. Nat Commun 5:3258

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262(5133):539–544

    Article  PubMed  CAS  Google Scholar 

  • Chang KN, Zhong S, Weirauch MT, Hon G, Pelizzola M, Li H, Huang SS, Schmitz RJ, Urich MA, Kuo D, Nery JR, Qiao H, Yang A, Jamali A, Chen H, Ideker T, Ren B, Bar-Joseph Z, Hughes TR, Ecker JR (2013) Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. elife 2:e00675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chao QM, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89(7):1133–1144

    Article  PubMed  CAS  Google Scholar 

  • Chen YF, Randlett MD, Findell JL, Schaller GE (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J Biol Chem 277(22):19861–19866

    Article  PubMed  CAS  Google Scholar 

  • Chen YF, Gao Z, Kerris RJ 3rd, Wang W, Binder BM, Schaller GE (2010) Ethylene receptors function as components of high-molecular-mass protein complexes in Arabidopsis. PLoS One 5(1):e8640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cho YH, Yoo SD (2015) Novel connections and gaps in ethylene signaling from the ER membrane to the nucleus. Front Plant Sci 5:733

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark KL, Larsen PB, Wang X, Chang C (1998) Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci U S A 95(9):5401–5406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cutcliffe JW, Hellmann E, Heyl A, Rashotte AM (2011) CRFs form protein-protein interactions with each other and with members of the cytokinin signalling pathway in Arabidopsis via the CRF domain. J Exp Bot 62(14):4995–5002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D'Agostino IB, Deruere J, Kieber JJ (2000) Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol 124(4):1706–1717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Degtjarik O, Dopitova R, Puehringer S, Nejedla E, Kuty M, Weiss MS, Hejatko J, Janda L, Kuta Smatanova I (2013) Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of AHP2, a signal transmitter protein from Arabidopsis thaliana. Acta Crystallogr Sect F Struct Biol Cryst Commun 69(Pt 2):158–161

    Google Scholar 

  • Degtjarik O, Dopitova R, Reha D, Puehringer S, Otrusinova O, Pekarova B, Szmitkowska A, Hrdinova V, Valkova M, Kuty M, Jayasree A, Weiss MS, Janda L, Kuta-Smatanova I, Zidek L, Hejatko J. Structural insights into the specificity of sensory histidine kinase signaling in Eukaryotes (unpublished)

    Google Scholar 

  • Dortay H, Mehnert N, Burkle L, Schmulling T, Heyl A (2006) Analysis of protein interactions within the cytokinin-signaling pathway of Arabidopsis thaliana. FEBS J 273(20):4631–4644

    Article  PubMed  CAS  Google Scholar 

  • Ecker JR (2004) Reentry of the ethylene MPK6 module. Plant Cell 16(12):3169–3173

    Article  PubMed Central  CAS  Google Scholar 

  • Feher VA, Zapf JW, Hoch JA, Whiteley JM, McIntosh LP, Rance M, Skelton NJ, Dahlquist FW, Cavanagh J (1997) High-resolution NMR structure and backbone dynamics of the Bacillus subtilis response regulator, Spo0F: implications for phosphorylation and molecular recognition. Biochemistry 36(33):10015–10025

    Article  PubMed  CAS  Google Scholar 

  • Gagne JM, Smalle J, Gingerich DJ, Walker JM, Yoo SD, Yanagisawa S, Vierstra RD (2004) Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci U S A 101(17):6803–6808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gajdosova S, Spichal L, Kaminek M, Hoyerova K, Novak O, Dobrev PI, Galuszka P, Klima P, Gaudinova A, Zizkova E, Hanus J, Dancak M, Travnicek B, Pesek B, Krupicka M, Vankova R, Strnad M, Motyka V (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot 62(8):2827–2840

    Article  PubMed  CAS  Google Scholar 

  • Gao R, Stock AM (2009) Biological insights from structures of two-component proteins. Annu Rev Microbiol 63:133–154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao Z, Chen YF, Randlett MD, Zhao XC, Findell JL, Kieber JJ, Schaller GE (2003) Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem 278(36):34725–34732

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Wen CK, Binder BM, Chen YF, Chang J, Chiang YH, Kerris RJ 3rd, Chang C, Schaller GE (2008) Heteromeric interactions among ethylene receptors mediate signaling in Arabidopsis. J Biol Chem 283(35):23801–23810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gattolin S, Alandete-Saez M, Elliott K, Gonzalez-Carranza Z, Naomab E, Powell C, Roberts JA (2006) Spatial and temporal expression of the response regulators ARR22 and ARR24 in Arabidopsis thaliana. J Exp Bot 57(15):4225–4233

    Article  PubMed  CAS  Google Scholar 

  • Grefen C, Stadele K, Ruzicka K, Obrdlik P, Harter K, Horak J (2008) Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 1(2):308–320

    Article  PubMed  CAS  Google Scholar 

  • Gruhn N, Heyl A (2013) Updates on the model and the evolution of cytokinin signaling. Curr Opin Plant Biol 16(5):569–574

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115(6):667–677

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7(1):40–49

    Article  PubMed  CAS  Google Scholar 

  • Hall AE, Bleecker AB (2003) Analysis of combinatorial loss-of-function mutants in the Arabidopsis ethylene receptors reveals that the ers1 etr1 double mutant has severe developmental defects that are EIN2 dependent. Plant Cell 15(9):2032–2041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hall AE, Chen QG, Findell JL, Schaller GE, Bleecker AB (1999) The relationship between ethylene binding and dominant insensitivity conferred by mutant forms of the ETR1 ethylene receptor. Plant Physiol 121(1):291–300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hall BP, Shakeel SN, Amir M, Ul Haq N, Qu X, Schaller GE (2012) Histidine kinase activity of the ethylene receptor ETR1 facilitates the ethylene response in Arabidopsis. Plant Physiol 159(2):682–695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hass C, Lohrmann J, Albrecht V, Sweere U, Hummel F, Yoo SD, Hwang I, Zhu T, Schafer E, Kudla J, Harter K (2004) The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis. EMBO J 23(16):3290–3302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heyl A, Wulfetange K, Pils B, Nielsen N, Romanov GA, Schmulling T (2007) Evolutionary proteomics identifies amino acids essential for ligand-binding of the cytokinin receptor CHASE domain. BMC Evol Biol 7:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heyl A, Riefler M, Romanov GA, Schmulling T (2012) Properties, functions and evolution of cytokinin receptors. Eur J Cell Biol 91(4):246–256

    Article  PubMed  CAS  Google Scholar 

  • Higuchi M, Pischke MS, Mahonen AP, Miyawaki K, Hashimoto Y, Seki M, Kobayashi M, Shinozaki K, Kato T, Tabata S, Helariutta Y, Sussman MR, Kakimoto T (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci U S A 101(23):8821–8826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR (1999) RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97(3):383–393

    Article  PubMed  CAS  Google Scholar 

  • Horak J, Janda L, Pekarova B, Hejatko J (2011) Molecular mechanisms of Signalling specificity via Phosphorelay pathways in Arabidopsis. Curr Protein Pept Sci 12(2):126–136

    Article  PubMed  CAS  Google Scholar 

  • Hosoda K, Imamura A, Katoh E, Hatta T, Tachiki M, Yamada H, Mizuno T, Yamazaki T (2002) Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators. Plant Cell 14(9):2015–2029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hothorn M, Dabi T, Chory J (2011) Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4. Nat Chem Biol 7(11):766–768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94(2):261–271

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Chang C, Sun Q, Meyerowitz EM (1995) Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269(5231):1712–1714

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, Meyerowitz EM (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10(8):1321–1332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33(2):221–233

    Article  PubMed  CAS  Google Scholar 

  • Hung YL, Jiang I, Lee YZ, Wen CK, Sue SC (2016) NMR study reveals the receiver domain of Arabidopsis ETHYLENE RESPONSE1 Ethylene receptor as an atypical type RESPONSE regulator. PLoS One 11(8):e0160598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hutchison CE, Kieber JJ (2007) Signaling via histidine-containing phosphotransfer proteins in Arabidopsis. Plant Signal Behav 2(4):287–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutchison CE, Li J, Argueso C, Gonzalez M, Lee E, Lewis MW, Maxwell BB, Perdue TD, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2006) The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18(11):3073–3087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413(6854):383–389

    Article  PubMed  CAS  Google Scholar 

  • Imamura A, Hanaki N, Nakamura A, Suzuki T, Taniguchi M, Kiba T, Ueguchi C, Sugiyama T, Mizuno T (1999) Compilation and characterization of Arabidopsis thaliana response regulators implicated in His-Asp phosphorelay signal transduction. Plant Cell Physiol 40(7):733–742

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409(6823):1060–1063

    Article  PubMed  CAS  Google Scholar 

  • Janiak-Spens F, West AH (2000) Functional roles of conserved amino acid residues surrounding the phosphorylatable histidine of the yeast phosphorelay protein YPD1. Mol Microbiol 37(1):136–144

    Article  PubMed  CAS  Google Scholar 

  • Ju C, Chang C (2015) Mechanistic insights in ethylene perception and signal transduction. Plant Physiol 169(1):85–95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, Tucker ML, Cooper B, Kieber JJ, Chang C (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci U S A 109(47):19486–19491

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato M, Mizuno T, Shimizu T, Hakoshima T (1997) Insights into multistep phosphorelay from the crystal structure of the C-terminal HPt domain of ArcB. Cell 88(5):717–723

    Article  PubMed  CAS  Google Scholar 

  • Kato M, Shimizu T, Mizuno T, Hakoshima T (1999) Structure of the histidine-containing phosphotransfer (HPt) domain of the anaerobic sensor protein ArcB complexed with the chemotaxis response regulator CheY. Acta Crystallogr D Biol Crystallogr 55:1257–1263

    Article  PubMed  CAS  Google Scholar 

  • Kiba T, Aoki K, Sakakibara H, Mizuno T (2004) Arabidopsis response regulator, ARR22, ectopic expression of which results in phenotypes similar to the wol cytokinin-receptor mutant. Plant Cell Physiol 45(8):1063–1077

    Article  PubMed  CAS  Google Scholar 

  • Kieber JJ, Schaller GE (2014) Cytokinins. The Arabidopsis Book 12:e0168

    Article  PubMed  PubMed Central  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72(3):427–441

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Ryu H, Hong SH, Woo HR, Lim PO, Lee IC, Sheen J, Nam HG, Hwang I (2006) Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc Natl Acad Sci U S A 103(3):814–819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knaggs MH, Salsbury FR Jr, Edgell MH, Fetrow JS (2007) Insights into correlated motions and long-range interactions in CheY derived from molecular dynamics simulations. Biophys J 92(6):2062–2079

    Article  PubMed  CAS  Google Scholar 

  • Konishi M, Yanagisawa S (2008) Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EIN3. Plant J 55(5):821–831

    Article  PubMed  CAS  Google Scholar 

  • Kosugi S, Ohashi Y (2000) Cloning and DNA-binding properties of a tobacco Ethylene-Insensitive3 (EIN3) homolog. Nucleic Acids Res 28(4):960–967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuderova A, Gallova L, Kuricova K, Nejedla E, Curdova A, Micenkova L, Plihal O, Smajs D, Spichal L, Hejatko J (2015) Identification of AHK2- and AHK3-like cytokinin receptors in Brassica napus reveals two subfamilies of AHK2 orthologues. J Exp Bot 66(1):339–353

    Article  PubMed  CAS  Google Scholar 

  • Larsen PB, Chang C (2001) The Arabidopsis eer1 mutant has enhanced ethylene responses in the hypocotyl and stem. Plant Physiol 125(2):1061–1073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Li Z, Tang L, Yang Y, Zouine M, Bouzayen M (2012) A conserved phosphorylation site regulates the transcriptional function of ETHYLENE-INSENSITIVE3-like1 in tomato. J Exp Bot 63(1):427–439

    Article  PubMed  CAS  Google Scholar 

  • Li W, Ma M, Feng Y, Li H, Wang Y, Ma Y, Li M, An F, Guo H (2015) EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell 163(3):670–683

    Article  PubMed  CAS  Google Scholar 

  • Light KM, Wisniewski JA, Vinyard WA, Kieber-Emmons MT (2016) Perception of the plant hormone ethylene: known-knowns and known-unknowns. J Biol Inorg Chem 21(5–6):715–728

    Article  PubMed  CAS  Google Scholar 

  • Lomin SN, Yonekura-Sakakibara K, Romanov GA, Sakakibara H (2011) Ligand-binding properties and subcellular localization of maize cytokinin receptors. J Exp Bot 62(14):5149–5159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lomin SN, Krivosheev DM, Steklov MY, Arkhipov DV, Osolodkin DI, Schmulling T, Romanov GA (2015) Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J Exp Bot 66(7):1851–1863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahonen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 14(23):2938–2943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahonen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Tormakangas K, Ikeda Y, Oka A, Kakimoto T, Helariutta Y (2006a) Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311(5757):94–98

    Article  PubMed  CAS  Google Scholar 

  • Mahonen AP, Higuchi M, Tormakangas K, Miyawaki K, Pischke MS, Sussman MR, Helariutta Y, Kakimoto T (2006b) Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis. Curr Biol 16(11):1116–1122

    Article  PubMed  CAS  Google Scholar 

  • Marina A, Mott C, Auyzenberg A, Hendrickson WA, Waldburger CD (2001) Structural and mutational analysis of the PhoQ histidine kinase catalytic domain: INSIGHT INTO THE REACTION MECHANISM. J Biol Chem 276(44):41182–41190

    Article  PubMed  CAS  Google Scholar 

  • Matsushika A, Mizuno T (1998) The structure and function of the histidine-containing phosphotransfer (HPt) signaling domain of the Escherichia coli ArcB sensor. J Biochem 124(2):440–445

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer H, Panneerselvam S, Mueller-Dieckmann J (2012) Protein kinase domain of CTR1 from Arabidopsis thaliana promotes ethylene receptor cross talk. J Mol Biol 415(4):768–779

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer H, Panneerselvam S, Kaljunen H, Tuukkanen A, Mertens HD, Mueller-Dieckmann J (2015) Structural model of the cytosolic domain of the plant ethylene receptor 1 (ETR1). J Biol Chem 290(5):2644–2658

    Article  PubMed  CAS  Google Scholar 

  • Merchante C, Brumos J, Yun J, Hu Q, Spencer KR, Enriquez P, Binder BM, Heber S, Stepanova AN, Alonso JM (2015) Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2. Cell 163(3):684–697

    Article  PubMed  CAS  Google Scholar 

  • Mieczkowski C, Iavarone AT, Alber T (2008) Auto-activation mechanism of the Mycobacterium tuberculosis PknB receptor Ser/Thr kinase. EMBO J 27(23):3186–3197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller CO, Skoog F, Vonsaltza MH, Strong FM (1955) Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc 77(5):1392–1392

    Article  CAS  Google Scholar 

  • Miwa K, Ishikawa K, Terada K, Yamada H, Suzuki T, Yamashino T, Mizuno T (2007) Identification of amino acid substitutions that render the Arabidopsis cytokinin receptor histidine kinase AHK4 constitutively active. Plant Cell Physiol 48(12):1809–1814

    Article  PubMed  CAS  Google Scholar 

  • Mok DWS, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118

    Article  PubMed  CAS  Google Scholar 

  • Mougel C, Zhulin IB (2001) CHASE: an extracellular sensing domain common to transmembrane receptors from prokaryotes, lower eukaryotes and plants. Trends Biochem Sci 26(10):582–584

    Article  PubMed  CAS  Google Scholar 

  • Moussatche P, Klee HJ (2004) Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J Biol Chem 279(47):48734–48741

    Article  PubMed  CAS  Google Scholar 

  • Muller-Dieckmann HJ, Grantz AA, Kim SH (1999) The structure of the signal receiver domain of the Arabidopsis thaliana ethylene receptor ETR1. Structure 7(12):1547–1556

    Article  PubMed  CAS  Google Scholar 

  • Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C (2004) Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16(6):1365–1377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nolen B, Taylor S, Ghosh G (2004) Regulation of protein kinases; controlling activity through activation segment conformation. Mol Cell 15(5):661–675

    Article  PubMed  CAS  Google Scholar 

  • Ocasio VJ, Correa F, Gardner KH (2015) Ligand-induced folding of a two-component signaling receiver domain. Biochemistry 54(6):1353–1363

    Article  PubMed  CAS  Google Scholar 

  • Otrusinova O, Demo G, Padrta P, Jasenakova Z, Pekarova B, Gelova Z, Szmitkowska A, Kaderavek P, Jansen S, Zachrdla M, Klumpler T, Marek J, Hritz J, Janda L, Iwai H, Wimmerova M, Hejatko J, Zidek L (2017) Conformational dynamics as a key factor of signaling mediated by the receiver domain of sensor histidine kinase from Arabidopsis thaliana. J Biol Chem. https://doi.org/10.1074/jbc.M117.790212

  • Pekarova B, Klumpler T, Triskova O, Horak J, Jansen S, Dopitova R, Borkovcova P, Papouskova V, Nejedla E, Sklenar V, Marek J, Zidek L, Hejatko J, Janda L (2011) Structure and binding specificity of the receiver domain of sensor histidine kinase CKI1 from Arabidopsis thaliana. Plant J 67(5):827–839

    Article  PubMed  CAS  Google Scholar 

  • Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two arabidopsis F box proteins: EBF1 and EBF2. Cell 115(6):679–689

    Article  PubMed  CAS  Google Scholar 

  • Punwani JA, Hutchison CE, Eric Schaller G, Kieber JJ (2010) The subcellular distribution of the Arabidopsis histidine phosphotransfer proteins is independent of cytokinin signaling. Plant J 62:473–482

    Article  PubMed  Google Scholar 

  • Qiao H, Chang KN, Yazaki J, Ecker JR (2009) Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev 23(4):512–521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiao H, Shen Z, Huang SS, Schmitz RJ, Urich MA, Briggs SP, Ecker JR (2012) Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338(6105):390–393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qu X, Hall BP, Gao Z, Schaller GE (2007) A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1. BMC Plant Biol 7:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajakulendran T, Sahmi M, Lefrancois M, Sicheri F, Therrien M (2009) A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461(7263):542–545

    Article  PubMed  CAS  Google Scholar 

  • Rashotte AM, Mason MG, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc Natl Acad Sci U S A 103(29):11081–11085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290(5499):2105–2110

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB (1999) A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283(5404):996–998

    Article  PubMed  CAS  Google Scholar 

  • Romanov GA, Spichal L, Lomin SN, Strnad M, Schmulling T (2005) A live cell hormone-binding assay on transgenic bacteria expressing a eukaryotic receptor protein. Anal Biochem 347(1):129–134

    Article  PubMed  CAS  Google Scholar 

  • Romanov GA, Lomin SN, Schmulling T (2006) Biochemical characteristics and ligand-binding properties of Arabidopsis cytokinin receptor AHK3 compared to CRE1/AHK4 as revealed by a direct binding assay. J Exp Bot 57(15):4051–4058

    Article  PubMed  CAS  Google Scholar 

  • Ruszkowski M, Brzezinski K, Jedrzejczak R, Dauter M, Dauter Z, Sikorski M, Jaskolski M (2013) Medicago truncatula histidine-containing phosphotransfer protein: structural and biochemical insights into the cytokinin transduction pathway in plants. FEBS J 280(15):3709–3720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakai H, Hua J, Chen QG, Chang C, Medrano LJ, Bleecker AB, Meyerowitz EM (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci U S A 95(10):5812–5817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    Article  PubMed  CAS  Google Scholar 

  • Salome PA, To JP, Kieber JJ, McClung CR (2006) Arabidopsis response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of circadian period. Plant Cell 18(1):55–69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaller GE, Ladd AN, Lanahan MB, Spanbauer JM, Bleecker AB (1995) The ethylene response mediator ETR1 from Arabidopsis forms a disulfide-linked dimer. J Biol Chem 270(21):12526–12530

    Article  PubMed  CAS  Google Scholar 

  • Schaller GE, Shiu SH, Armitage JP (2011) Two-component systems and their co-option for eukaryotic signal transduction. Curr Biol 21(9):R320–R330

    Article  PubMed  CAS  Google Scholar 

  • Scharein B, Groth G (2011) Phosphorylation alters the interaction of the Arabidopsis phosphotransfer protein AHP1 with its sensor kinase ETR1. PLoS One 6(9):e24173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scharein B, Voet-van-Vormizeele J, Harter K, Groth G (2008) Ethylene signaling: identification of a putative ETR1-AHP1 phosphorelay complex by fluorescence spectroscopy. Anal Biochem 377(1):72–76

    Article  PubMed  CAS  Google Scholar 

  • Shakeel SN, Wang X, Binder BM, Schaller GE (2012) Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AoB Plants 5:plt010

    Google Scholar 

  • Skerker JM, Perchuk BS, Siryaporn A, Lubin EA, Ashenberg O, Goulian M, Laub MT (2008) Rewiring the specificity of two-component signal transduction systems. Cell 133(6):1043–1054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12(23):3703–3714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spichal L (2012) Cytokinins - recent news and views of evolutionally old molecules. Funct Plant Biol 39(4):267–284

    Article  CAS  Google Scholar 

  • Spichal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmulling T (2004) Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45(9):1299–1305

    Article  PubMed  CAS  Google Scholar 

  • Steklov MY, Lomin SN, Osolodkin DI, Romanov GA (2013) Structural basis for cytokinin receptor signaling: an evolutionary approach. Plant Cell Rep 32(6):781–793

    Article  PubMed  CAS  Google Scholar 

  • Stolz A, Riefler M, Lomin SN, Achazi K, Romanov GA, Schmulling T (2011) The specificity of cytokinin signalling in Arabidopsis thaliana is mediated by differing ligand affinities and expression profiles of the receptors. Plant J 67(1):157–168

    Article  PubMed  CAS  Google Scholar 

  • Street IH, Aman S, Zubo Y, Ramzan A, Wang X, Shakeel SN, Kieber JJ, Schaller GE (2015) Ethylene inhibits cell proliferation of the Arabidopsis root meristem. Plant Physiol 169(1):338–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sugawara H, Kawano Y, Hatakeyama T, Yamaya T, Kamiya N, Sakakibara H (2005) Crystal structure of the histidine-containing phosphotransfer protein ZmHP2 from maize. Protein Sci 14(1):202–208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suzuki T, Miwa K, Ishikawa K, Yamada H, Aiba H, Mizuno T (2001a) The Arabidopsis sensor His-kinase, AHK4, can respond to cytokinins. Plant Cell Physiol 42(2):107–113

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Sakurai K, Ueguchi C, Mizuno T (2001b) Two types of putative nuclear factors that physically interact with histidine-containing phosphotransfer (Hpt) domains, signaling mediators in His-to-Asp phosphorelay, in Arabidopsis thaliana. Plant Cell Physiol 42(1):37–45

    Article  PubMed  CAS  Google Scholar 

  • To JP, Kieber JJ (2008) Cytokinin signaling: two-components and more. Trends Plant Sci 13(2):85–92

    Article  PubMed  CAS  Google Scholar 

  • To JP, Haberer G, Ferreira FJ, Deruere J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16(3):658–671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ueguchi C, Koizumi H, Suzuki T, Mizuno T (2001) Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol 42(2):231–235

    Article  PubMed  CAS  Google Scholar 

  • Urao T, Miyata S, Yamaguchi-Shinozaki K, Shinozaki K (2000) Possible His to Asp phosphorelay signaling in an Arabidopsis two-component system. FEBS Lett 478(3):227–232

    Article  PubMed  CAS  Google Scholar 

  • Verma V, Sivaraman J, Srivastava AK, Sadanandom A, Kumar PP (2015) Destabilization of interaction between cytokinin signaling intermediates AHP1 and ARR4 modulates Arabidopsis development. New Phytol 206(2):726–737

    Article  PubMed  CAS  Google Scholar 

  • Volz K (1993) Structural conservation in the CheY superfamily. Biochemistry 32(44):11741–11753

    Article  PubMed  CAS  Google Scholar 

  • Wagner JR, Zhang J, Brunzelle JS, Vierstra RD, Forest KT (2007) High resolution structure of Deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution. J Biol Chem 282(16):12298–12309

    Article  PubMed  CAS  Google Scholar 

  • Wang S (2012) Bacterial two-component systems: structures and signaling mechanisms. In: Huang C (ed) Protein phosphorylation in human health. IntechOpen, London, United Kingdom, pp 339–464

    Google Scholar 

  • Wang W, Hall AE, O'Malley R, Bleecker AB (2003) Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc Natl Acad Sci U S A 100(1):352–357

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Esch JJ, Shiu SH, Agula H, Binder BM, Chang C, Patterson SE, Bleecker AB (2006) Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ETR1 ethylene receptor of Arabidopsis. Plant Cell 18(12):3429–3442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wen X, Zhang C, Ji Y, Zhao Q, He W, An F, Jiang L, Guo H (2012) Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res 22(11):1613–1616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson D, Pethica R, Zhou Y, Talbot C, Vogel C, Madera M, Chothia C, Gough J (2009) SUPERFAMILY--sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res 37(Database issue):D380–D386

    Article  PubMed  CAS  Google Scholar 

  • Wulfetange K, Lomin SN, Romanov GA, Stolz A, Heyl A, Schmulling T (2011) The Cytokinin receptors of Arabidopsis thaliana are locating mainly to the endoplasmic reticulum. Plant Physiol 156(4):1808–1818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Q, Porter SW, West AH (2003) The yeast YPD1/SLN1 complex: insights into molecular recognition in two-component signaling systems. Structure 11(12):1569–1581

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Suzuki T, Terada K, Takei K, Ishikawa K, Miwa K, Yamashino T, Mizuno T (2001) The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol 42(9):1017–1023

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki K, Kigawa T, Inoue M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K, Yokoyama S (2005) Solution structure of the major DNA-binding domain of Arabidopsis thaliana ethylene-insensitive3-like3. J Mol Biol 348(2):253–264

    Article  PubMed  CAS  Google Scholar 

  • Yoo SD, Cho YH, Tena G, Xiong Y, Sheen J (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451(7180):789–795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zdarska M, Dobisova T, Gelova Z, Pernisova M, Dabravolski S, Hejatko J (2015) Illuminating light, cytokinin, and ethylene signalling crosstalk in plant development. J Exp Bot 66:4913–4931

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, To JP, Cheng CY, Eric Schaller G, Kieber JJ (2011) Type-A response regulators are required for proper root apical meristem function through the post-transcriptional regulation of PIN auxin efflux carriers. Plant J 68:1–10

    Article  PubMed  CAS  Google Scholar 

  • Zhou YF, Nan B, Nan J, Ma Q, Panjikar S, Liang YH, Wang Y, Su XD (2008) C4-dicarboxylates sensing mechanism revealed by the crystal structures of DctB sensor domain. J Mol Biol 383(1):49–61

    Article  PubMed  CAS  Google Scholar 

  • Zurcher E, Muller B (2016) Cytokinin synthesis, signaling, and function–advances and new insights. Int Rev Cell Mol Biol 324:1–38

    Article  PubMed  CAS  Google Scholar 

  • Zurcher E, Liu J, di Donato M, Geisler M, Muller B (2016) Plant development regulated by cytokinin sinks. Science 353(6303):1027–1030

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation, grant 13-25280S, and by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601) and CZ.02.1.01/0.0/0.0/16_026/0008446.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hejátko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pekarova, B., Szmitkowska, A., Houser, J., Wimmerova, M., Hejátko, J. (2018). Cytokinin and Ethylene Signaling. In: Hejátko, J., Hakoshima, T. (eds) Plant Structural Biology: Hormonal Regulations. Springer, Cham. https://doi.org/10.1007/978-3-319-91352-0_10

Download citation

Publish with us

Policies and ethics