Skip to main content

Copper Nanostructures Applications in Plant Protection

  • Chapter
  • First Online:
Book cover Nanobiotechnology Applications in Plant Protection

Abstract

Plant pathologists throughout the globe are working closely to develop a powerful solution for food and agricultural commodities protection from diverse pathogens. Nanobiotechnology has great potential in agriculture especially in plant health has been reported. Management of most beneficial micronutrient and pesticides for sustainable crop production is a priority-based area of research in agriculture. Copper nanoparticles are one among the critical nanosubstances because of their diverse characteristics and applications. The present chapter summarizes the modern-day knowledge and the future prospects in the applications of copper nanomaterials in plant pathology studies. Applications involve nanosensors, antibacterial agent, antifungal agent, plant growth promotion, and plant protection. The beneficial and deleterious effects of Cu nanoparticles through enhanced root and shoot length and fruit and crop yield and substantial increase in vegetative biomass of seedlings in different plant species were also explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elsalam KA, Vasil’kov AY, Said-Galiev EE, Rubina MS, Khokhlov AR, Naumkin AV, Shtykova EV, Alghuthaymi MA (2018) Bimetallic and chitosan nanocomposites hybrid with trichoderma: novel antifungal agent against cotton soil–borne fungi. Eur J Plant Pathol 151:57–72. https://doi.org/10.1007/s10658-017-1349-8

    Article  CAS  Google Scholar 

  • Adams J, Wright M, Wagner H, Valiente J, Britt D, Anderson A (2017) Cu from dissolution of CuO nanoparticles signals changes in root morphology. Plant Physiol Biochem 110:108–117

    Article  PubMed  CAS  Google Scholar 

  • Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS (2012) Effect of copper oxide nano particle on seed germination of selected crops. J Agric Sci Technol A 2:815–823

    CAS  Google Scholar 

  • Adhikari T, Sarkar D, Mashayekhi H, Xing BS (2016) Growth and enzymatic activity of maize (Zea mays L.) plant: solution culture test for copper dioxide nano particles. J Plant Nutr 39:102–118

    Google Scholar 

  • Ahamed M, Alhadlaq HA, Khan MM, Karuppiah P, Aldhabi NA (2014) Synthesis, characterization and antimicrobial activity of copper oxide nanoparticles. J Nano Mater 2014:1–4. https://doi.org/10.1155/2014/637858

    Article  CAS  Google Scholar 

  • Anderson A, McLean J, McManus P, Britt D (2017) Soil chemistry influences the phytotoxicity of metal oxide nanoparticles. Int J Nanotechnol 14(1–6):15–21

    Article  CAS  Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827

    Article  PubMed  CAS  Google Scholar 

  • Banik S, Pérez-de-Luque A (2017) In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants. Spanish J Agric Res 15(2):1005. https://doi.org/10.5424/sjar/2017152-10305

    Article  Google Scholar 

  • Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20:433–441

    Article  PubMed  CAS  Google Scholar 

  • Bogdanović U, Lazić V, Vodnik V, Budimir M, Marković Z, Dimitrijević S (2014) Copper nanoparticles with high antimicrobial activity. Mater Lett 128:75–78

    Article  CAS  Google Scholar 

  • Boonham N, Glover R, Tomlinson J, Mumford R (2008) Exploiting generic platform technologies for the detection and identification of plant pathogens. Eur J Plant Pathol 121:355–363

    Article  CAS  Google Scholar 

  • Borkow G, Gabbay J (2005) Copper as a biocidal tool. Curr Med Chem 12:2163–2175

    Article  PubMed  CAS  Google Scholar 

  • Borkow G, Gabbay J (2009) Copper, an ancient remedt returning to fight microbial, fungal and viral infections. Curr Chem Biol 3:272–278

    CAS  Google Scholar 

  • Bouson S, Krittayavathananon A, Phattharasupakun N, Siwayaprahm P, Sawangphruk M (2017) Antifungal activity of water–stable copper–containing metal–organic frameworks. R Soc Open Sci 4:170654 https://doi.org/10.1098/rsos.170654

    Article  PubMed  PubMed Central  Google Scholar 

  • Bramhanwade K, Shende S, Bonde S, Gade A, Rai M (2016) Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environ Chem Lett 14(2):229–235

    Article  CAS  Google Scholar 

  • Brunel F, ElGueddari NE, Moerschbacher BM (2013) Complexation of copper (II) with chitosan nanogels: toward control of microbial growth. Carbohydr Polym 92:1348–1356

    Article  PubMed  CAS  Google Scholar 

  • Cárdenaz G, Díaz JV, Meléndrez MF, Cruzat CC, Cancino AG (2009) Colloidal Cu nanoparticles/chitosan composite film obtained by microwave heating for food package applications. Polym Bull 62:511–524

    Article  CAS  Google Scholar 

  • Carmen IU, Chithra P, Huang Q, Takhistov P, Liu S, Kokini JL (2003) Nanotechnology: a new frontier in food science. Food Technol 57:24–29

    Google Scholar 

  • Chatterjee AK, Sarkar RK, Chattopadhyay AP, Aich P, Chakraborty R, Basu T (2012) A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against. Nanotechnology 23 (8):085103

    Google Scholar 

  • Chen S, Sommers JM (2001) Alkanethiolate–protected copper nanoparticles: spectroscopy, electrochemistry, and solid–state morphological evolution. J Phys Chem B 105:816–8820

    Google Scholar 

  • Choudhary RC, Kumaraswamy RV, Kumari S, Pal A, Raliya R, Biswas P, Saharan V (2017a) Synthesis, characterization, and application of chitosan nanomaterials loaded with zinc and copper for plant growth and protection. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology: food and environmental paradigm. Springer Nature Singapore Pte Ltd, Singapore, pp 227–248

    Chapter  Google Scholar 

  • Choudhary RC, Kumaraswamy RV, Kumari S, Sharma SS, Pal A, Raliya R, Biswas P, Saharan V (2017b) Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Sci Rep 7:9754. https://doi.org/10.1038/s41598-017-08571-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Cioffi N, Rai M (2012) Nano-antimicrobials: progress and prospects. Springer-Verlag, Berlin, Heidelberg

    Book  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N (2004) Antifungal activity of polymer–based copper nanocomposite coatings. Appl Phys Lett 85(12):2417–2419

    Article  CAS  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17(21):5255–5262

    Article  CAS  Google Scholar 

  • Costa MVJD, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110–119

    Article  CAS  Google Scholar 

  • Dang V P, Vo TKL, Nguyen TKL, Nguyen ND, Nguyen DC, Bui DD, Bui DC, Nguyen QH (2010) Synthesis and antimicrobial effects of colloidal silver nanoparticles in chitosan by -irradiation. J Exp Nanosci 5(2):169–179

    Google Scholar 

  • Dimkpa CO, McLean GE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Bio Metals 26(6):913–924

    Google Scholar 

  • Dimkpa C, Bindraban P, Fugice J, Agyin-Birikorang S, Singh U, Hellums D (2017) Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agron Sustain Dev 37:5

    Article  CAS  Google Scholar 

  • Du WL, Niu SS, Xu YL, Xu ZR, Fan CL (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr Polym 75:385–389

    Article  CAS  Google Scholar 

  • Eastman JA, Choi S, Li S, Yu W, Thompson L (2001) Anomalously increased effective thermal conductivities of ethylene glycol–based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720

    Article  CAS  Google Scholar 

  • Elmer W, White JC (2016) The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ Sci Nano 3:1072–1079

    Article  CAS  Google Scholar 

  • El-Sayed NR (2003) Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP–palladium nanoparticles. J Am Chem Soc 125:8340–8347

    Article  PubMed  CAS  Google Scholar 

  • Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromn C, Moya JS (2009) Antibacterial and antifungal activity of a soda–lime glass containing copper nanoparticles. Nanotechnology 20(50):505701

    Article  PubMed  CAS  Google Scholar 

  • Etefagh R, Azhir E, Shahtahmasebi N (2013) Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Sci Iran 20(3):1055–1058

    Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20. https://doi.org/10.3389/fenvs.2016.00020

    Article  Google Scholar 

  • Garcıa VN, Gonzalez A, Fuentes M, Aviles M, Rios MY, Zepeda G, Rojas MG (2003) Antifungal activities of nine traditional Mexican medicinal plants. Jethnopharmacol 87(1):85–88.

    Google Scholar 

  • Garcia M, Forbe T, Gonzalez E (2010) Potential applications of nanotechnology in the agro–food sector. Ciênc Tecnol Aliment 30:573–581

    Article  Google Scholar 

  • Ghasemian E, Naghoni A, Tabaraie B, Tabaraie T (2012) In vitro susceptibility of filamentous fungi to copper nanoparticles assessed by rapid XTT colorimetry and agar dilution method. J Mycol Med 22:322–328

    Article  PubMed  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano–biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  PubMed  CAS  Google Scholar 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3:21743–21752

    Article  CAS  Google Scholar 

  • Giannousi K, Pantazaki A, Dendrinou-Samara C (2017) Copper based nanoparticles as antimicrobials. In: Ficai A, Grumezescu AM (eds) Nanostructures for antimicrobial therapy. Elsevier, Amsterdam, pp 515–527

    Chapter  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792

    Article  PubMed  CAS  Google Scholar 

  • Guerrero SIC, Brito EMS, Castillo HAP, Rivero SHT, Caretta CA, Velasco AL, Duran R, Borunda EO (2014) Effect of CuO nanoparticles over isolated bacterial strains from agricultural soil. J Nanomater 2014:1–13

    Article  CAS  Google Scholar 

  • Gunawan C, Teoh WY, Marquis CP, Amal R(2011) Cytotoxic Origin of Copper(II) Oxide Nanoparticles: Comparative Studies with Micron-Sized Particles, Leachate, and Metal Salts. ACS Nano 5 (9):7214–7225

    Google Scholar 

  • Hafeez A, Razzaq A, Mahmood T, Jhanzab HM (2015) Potential of copper nanoparticles to increase growth and yield of wheat. J Nanosci Adv Technol 1:6–11

    Google Scholar 

  • Hernández-Hernández H, González-Morales S, Benavides-Mendoza A, Ortega-Ortiz H, Cadenas-Pliego G, Juárez-Maldonado A (2018) Effects of chitosan–PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules 23(1):178

    Article  CAS  PubMed Central  Google Scholar 

  • Hirsh S, Schiefer J, Gschwandtner A, Hartmann M (2014) The determinants of firm profitability differences in EU food processing. J Agric Econ 65:703–721

    Article  Google Scholar 

  • Honary H, Barabadi H, Gharaei-Fathabad E, Naghibi F (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomater Biostruct 7(3):999–1005

    Google Scholar 

  • Hong J, Wang L, Sun Y, Zhao L, Niu G, Tan W, Gardea-Torresdey JL (2016) Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci Total Environ 563:904–911

    Article  PubMed  CAS  Google Scholar 

  • Hooley G, Piercy NF, Nicoulaud B (2014) Marketing strategy and competitive positioning. Prentice Hall/Financial Times, London (ISBN 9780273740933)

    Google Scholar 

  • Ingle AP, Duran N, Rai M (2014) Bioactivity, mechanism of action, and cytotoxicity of copper–based nanoparticles: a review. Appl Microbiol Biotechnol 98:1001–1009

    Article  PubMed  CAS  Google Scholar 

  • Jeong S, Woo K, Kim D, Lim S, Kim JS, Shin H, Moon J (2008) Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink–jet printing. Adv Funct Mater 18(5):679–686

    Article  CAS  Google Scholar 

  • Juarez-Maldonado A, Ortega-Ortiz H, Perez-Labrada F, Cadenas-Pliego G, Benavides-Mendoza A (2016) Cu nanoparticles absorbed on chitosan hydrogels positively alter morphological, production, and quality characteristics of tomato. J Appl Bot Food Qual 89:183–189

    CAS  Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

    Article  PubMed  CAS  Google Scholar 

  • Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17

    Article  CAS  Google Scholar 

  • Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732

    Article  PubMed  CAS  Google Scholar 

  • Karunakaran G, Suriyaprabha R, Manivasakan P, Yuvakkumar R, Rajendran V, Kannan N (2013) Impact of nano and bulk ZrO2, TiO2 particles on soil nutrient contents and PGPR. J Nanosci Nanotechnol 13(1):678–685

    Article  PubMed  CAS  Google Scholar 

  • Kasana RC, Panwar NR, Kaul RK, Kumar P (2017) Biosynthesis and effects of copper nanoparticles on plants. Environ Chem Lett 15:233–240

    Article  CAS  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28:775–785

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim MH, Lim B, Lee EP, Xia Y (2008) Polyol synthesis of Cu2O nanoparticles: use of chloride to promote the formation of a cubic morphology. J Mater Chem 18:4069–4073

    Article  CAS  Google Scholar 

  • Konotop YO, Kovalenko MS, Ulynets VZ, Meleshko AO, Batsmanova LM, Taran NY (2014) Phytotoxicity of colloidal solutions of metal–containing nanoparticles. Cytol Genet 48:99–102

    Article  Google Scholar 

  • Kumar CSSR (2009) Metallic nanomaterials. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim

    Google Scholar 

  • Landa P, Cyrusova T, Jerabkova J, Drabek O, Vanek T, Podlipna R (2016) Effect of metal oxides on plant germination: phytotoxicity of nanoparticles, bulk materials, and metal ions. Water Air Soil Pollut 227:448. https://doi.org/10.1007/s11270–016–3156–9

    Article  Google Scholar 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum) plant agar test for water–insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Chung H, Kim S, Lee I (2013) The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Pollut 224(9):1668. https://doi.org/10.1007/S11270-013-1668-0

    Article  Google Scholar 

  • Le Van N, Ma C, Shang J, Rui Y, Liu S, Xing B(2016) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–670

    Google Scholar 

  • Li Y, Yang D, Cui J (2017) Graphene oxide loaded with copper oxide nanoparticles as an antibacterial agent against Pseudomonas syringae pv. tomato. RSC Adv 7:38853–38860

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Google Scholar 

  • Liu J, Dhungana B, Cobb GP (2018) Environmental behavior, potential phytotoxicity, and accumulation of copper oxide nanoparticles and arsenic in rice plants. Environ Toxicol Chem 37 (1):11–20

    Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54

    Article  PubMed  CAS  Google Scholar 

  • Mohan R, Shanmugharaj AM, Hun RS (2011) An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity. J Biomed Mater Res B 96:119–126

    Article  CAS  Google Scholar 

  • Mondal KK, Mani C (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62(2):889–893

    Article  CAS  Google Scholar 

  • Montag J, Schreiber L, Schönherr J (2006) An in vitro study on the postinfection activities of copper hydroxide and copper sulfate against conidia of Venturia inaequalis. J Agric Food Chem 54(3):893–899

    Article  PubMed  CAS  Google Scholar 

  • Nair PMG, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302–313

    Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A-J, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17 (5):372–386

    Google Scholar 

  • Nelson SC (2008) Late blight of tomato (Phytophthora infestans). Honolulu (HI): University of Hawaii. 10 p. (Plant Disease; PD–45).

    Google Scholar 

  • Nhan LV, Ma C, Rui Y, Liu S, Li X, Xing B, Liu L (2015) Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci Rep 5:11618. https://doi.org/10.1038/srep11618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nimse SB, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5(35):27986–28006

    Article  CAS  Google Scholar 

  • Ouda SM (2014) Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol 9:34–42

    Article  CAS  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica–silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Patolsky F, Zheng G, Lieber CM (2006) Nanowire sensors for medicine and life sciences. Nanomedicine 1:51–65

    Article  PubMed  CAS  Google Scholar 

  • Pérez-de-Luque A, Hermosín MC (2013) Nanotechnology and its use in agriculture. Wiley-Blackwell, Chichester, pp 299–405

    Google Scholar 

  • Perreault F, Samadani M, Dewez D (2014) Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology 8:374–382

    Article  PubMed  CAS  Google Scholar 

  • Ponmurugan P, Manjukarunambika K, Elango V, Gnanamangai BM (2016) Antifungal activity of biosynthesized copper nanoparticles evaluated against red root–rot disease in tea plants. J Exp Nanosci 11(13):1019–1031

    Article  CAS  Google Scholar 

  • Pradhan S, Patra P, Mitra S, Dey KK, Basu S, Chandra S, Palit P, Goswami A (2015) Copper nanoparticle (CuNP) nanochain arrays with a reduced toxicity response: a biophysical and biochemical outlook on Vigna radiata. J Agric Food Chem 63:2606–2617

    Article  PubMed  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart 2014:1–8 https://doi.org/10.1155/2014/963961

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017b) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 253–269

    Chapter  Google Scholar 

  • Rafique R, Arshad M, Khokhar MF, Qazi IA, Hamza A, Virk N (2014) Growth response of wheat to titania nanoparticles application. NUST J Eng Sci 7:42–46

    Google Scholar 

  • Rai M, Kratosova G (2015) Management of phytopathogens by application of green nanobiotechnology: emerging trends and challenges. J Agric Sci 66:15–22

    Google Scholar 

  • Rajasekaran P, Santra S (2015) Hydrothermally treated chitosan hydrogel loaded with copper and zinc particles as a potential micronutrient–based antimicrobial feed additive. Front Vet Sci 2:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116

    Article  CAS  Google Scholar 

  • Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78. https://doi.org/10.3389/fchem.2017.00078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Regier N, Cosio C, von Moos N, Slaveykova VI (2015) Effects of copper–oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii. Chemosphere 128:56–61

    Article  PubMed  CAS  Google Scholar 

  • Rubina RS, Vasil’kov AY, Naumkin AV, Shtykova EV, Abramchuk SS, Alghuthaymi MA, Abd-Elsalam KA (2017) Synthesis and characterization of chitosan–copper nanocomposites and their fungicidal activity against two sclerotia–forming plant pathogenic fungi. J Nanostruct Chem 7:249–258. https://doi.org/10.1007/s40097–017–0235–4

    Article  CAS  Google Scholar 

  • Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683

    Article  PubMed  CAS  Google Scholar 

  • Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A, Biswas P (2015) Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 75:346–353

    Article  PubMed  CAS  Google Scholar 

  • Saharan V, Kumaraswamy RV, Choudhary RC, Kumari S, Pal A, Raliya R, Biswas P (2016) Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. J Agric Food Chem 64(31):6148–6155

    Article  PubMed  CAS  Google Scholar 

  • Salavati-Niasari M, Davar F, Mir N (2008) Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron 27 (17):3514–3518

    Google Scholar 

  • Salzemann C, Lisiecki I, Urban J, Pileni MP (2004). Anisotropic copper nanocrystals synthesized in a supersaturated medium: Nanocrystal growth. Langmuir 20(26): 11772–11777.

    Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Manowade KR, Mujeeb MA, Mundaragi AC, Jogaiah S, David M, Thimmappa SC, Prasad R, Harish ER (2017a) Production of bionanomaterials from agricultural wastes. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 33–58

    Chapter  Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017b) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 73–97

    Chapter  Google Scholar 

  • Schlich K, Hund-Rinke K (2015) Influence of soil properties on the effect of silver nanomaterials on microbial activity in five soils. Environ Pollut 196:321–330

    Article  PubMed  CAS  Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Agric Food 15:22–44

    Google Scholar 

  • Sekhon BB (2014) Nanotechnology in agri-food production: an overview. Nanotechnology, Nanotechnol Sci Appl. 7:31–53

    Google Scholar 

  • Servin A, Elmer W, Mukherjee A, Torre-Roche RD, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:92 https://doi.org/10.1007/s11051-015-2907-7

    Article  CAS  Google Scholar 

  • Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L) seedlings. Chemosphere 93:906–915

    Article  PubMed  CAS  Google Scholar 

  • Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L). Environ Exp Bot 102:37–47

    Article  CAS  Google Scholar 

  • Shende S, Ingle AP, Gade A, Rai M (2015) Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol 31:865–873

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Abid AD, Kennedy IM, Hristova KR, Silk WK (2011) To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environ Poll 159 (5):1277–1282

    Google Scholar 

  • Singh D, Kumar A (2016) Impact of irrigation using water containing CuO and ZnO nanoparticles on Spinacia oleracea grown in soil media. Bull Environ Contam Toxicol 97(4):548–553

    Google Scholar 

  • Sodano V, Verneau F (2014) Competition policy and food sector in the European Union. J Int Food Agribusiness Mark 26:155–172

    Article  Google Scholar 

  • Somers E (1959) The preparation of bordeaux mixture. J Sci Food Agric 10 (1):68–72

    Google Scholar 

  • Sonkaria S, Ahn SH, Khare V (2012) Nanotechnology and its impact on food and nutrition: a review. Recent Pat Food Nutr Agric 4(1):8–18.

    Google Scholar 

  • Song G, Hou W, Gao Y, Wang Y, Lin L, Zhang Z, Wang H (2016) Effects of CuO nanoparticles on Lemna minor. Bot Stud 57:3. https://doi.org/10.1186/s40529-016-0118-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479.

    Google Scholar 

  • Subramanian B, Anu Priya K, Thanka Rajan S, Dhandapani P, Jayachandran M (2014) Antimicrobial activity of sputtered nanocrystalline CuO impregnated fabrics. Mater Lett 128:1–4

    Article  CAS  Google Scholar 

  • Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbial toxicity. Nanoscale 5(2):463–474

    Article  PubMed  CAS  Google Scholar 

  • Theivasanthi T, Alagar M (2011) Studies of copper nanoparticles effects on micro-organisms. arXiv preprint arXiv:1110: 1372.

    Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L) seedlings. Plant Physiol Biochem 96:189–198

    Article  PubMed  CAS  Google Scholar 

  • Van Acker H, Van Dijck P, Coenye T (2014) Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol 22 (6):326–333

    Google Scholar 

  • Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Chauhan DK (2017) Nitric oxide alleviates silver nanoparticles (AgNps)–induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177

    Article  PubMed  CAS  Google Scholar 

  • Viet PV, Nguyen HT, Cao TM, Hieu LV (2016) Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method. J Nanomater 2016:1–7 https://doi.org/10.1155/2016/1957612

    Google Scholar 

  • Wang WC, Freemark K (1995) The Use of Plants for Environmental Monitoring and Assessment. Ecotoxicol Environ Safe 30 (3):289–301

    Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L). Environ Sci Technol 46:4434–4441

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Lombi E, Zhao FJ, Kopittke PM (2016a) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Xu L, Zhao J, Wang X, White JC, Xing B (2016b) CuO nanoparticle interaction with Arabidopsis thaliana: toxicity, parent-progeny transfer, and gene expression. Environ Sci Technol 50:6008–6016

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Liu Y, Liu J, Zhang Y, Zhang X, Pan H (2016c) The Gene Is Required for Apothecial Development . Phytopathology 106 (5):484–490

    Google Scholar 

  • Wani IA, Ahmad T (2013) Size and shape dependent antifungal activity of gold nanoparticles: a case study of Candida. Colloids Surf B 101:162–170

    Article  CAS  Google Scholar 

  • Wei TY, Huang CT, Hansen BJ, Lin YF, Chen L J, Lu SY, Wang ZL (2010) Large enhancement in photon detection sensitivity via Schottky-gated CdS nanowire nanosensors. Appl Physics Lett 96(1):013508.

    Google Scholar 

  • Weir E, Lawlor A, Whelan A, Regan F (2008) The use of nanoparticles in antimicrobial materials and their characterization. Analyst 133:835–845

    Article  PubMed  CAS  Google Scholar 

  • Whitesides GM (2003) The “right” size in nanobiotechnology. Nat Biotechnol 21:1161–1165

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Chen J, Dou R, Gao X, Mao C, Wang L(2015) Assessment of the Phytotoxicity of Metal Oxide Nanoparticles on Two Crop Plants, Maize (Zea mays L.) and Rice (Oryza sativa L.). Int J Environ Rese Public Health 12 (12):15100–15109

    Google Scholar 

  • Yasmeen F, Raja NI, Razzaq A, Komatsu S (2017) Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanoparticles. Biochim Biophys Acta 1865:28–42

    Article  CAS  Google Scholar 

  • Young M, Santra S (2014) Copper (Cu)–Silica nanocomposite containing valence-engineered Cu: a new strategy for improving the antimicrobial efficacy of Cu biocides. J Agric Food Chem 62:6043–6052

    Article  PubMed  CAS  Google Scholar 

  • Youssef K, Hashim AF, Rubina RS, Alghuthaymi MA, Abd-Elsalam KA (2017) Fungicidal efficacy of chemically–produced copper nanoparticles against Penicillium digitatum and Fusarium solani on citrus fruit. Philipp Agric Sci 100:69–78

    Google Scholar 

  • Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156

    Article  CAS  Google Scholar 

  • Zabrieski Z, Morrell E, Hortin J, Dimkpa C, McLean J, Britt D, Anderson A (2015) Pesticidal activity of metal oxide nanoparticles on plant pathogenic isolates of Pythium. Ecotoxicology 24(6):1305–1314

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Huang Y, Keller AA (2017) Comparative metabolic response between cucumber (Cucumis sativus) and corn (Zea mays) to a Cu(OH)2 nanopesticide. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.7b01306

  • Zuverza-Mena N, Medina-Velo IA, Barrios AC, Tan W, Peralta-Videa JR, Gardea-Torresdey JL (2015) Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ Sci Process Impacts 17(10):1783–1793

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Science and Technology Development Fund (STDF), Joint Egypt (STDF)–South Africa (NRF) Scientific Cooperation, Grant ID. 27837 to Kamel Abd-Elsalam.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gabal, E., Ramadan, M.M., Amal-Asran, Alghuthaymi, M.A., Abd-Elsalam, K.A. (2018). Copper Nanostructures Applications in Plant Protection. In: Abd-Elsalam, K., Prasad, R. (eds) Nanobiotechnology Applications in Plant Protection. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-91161-8_3

Download citation

Publish with us

Policies and ethics