Skip to main content

Chitosan-Based Nanostructures in Plant Protection Applications

  • Chapter
  • First Online:
Nanobiotechnology Applications in Plant Protection

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Biopolymer chitosan is presently one of the most favorable natural polymers for use in micro- and nanotechnology, and it is very effective for use in agricultural sector when combined with natural functional compounds or metal nanoparticles to eliminate problems associated with the waste of destructive chemicals. In the current chapter, the primary uses of nanochitosan in agriculture and its potential uses in plant protection control are reviewed. Nanochitosan has been reported to possess antifungal and antibacterial activity and shown to be effective against seed-borne pathogens when applied as seed treatment. Chitosan behaves as a resistance elicitor inducing both local and systemic plant defense responses even when applied to the seeds. The chitosan used as soil improvement was shown to provide many benefits to different plant species by reducing pathogen attack and infection and promoting growth. The authors outline the plant protection and growth regulatory applications of chitosan nanomaterials. Current and possible utilization of chitosan nanomaterials in plant nutrition, abiotic stress management, pesticides remediation, plant transformation, and post-harvest application is also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aziz HMM, Hasaneen MNA, Omar AM (2018) Effect of foliar application of nano chitosan NPK fertilizer on the chemical composition of wheat grains. Egypt J Bot. https://doi.org/10.21608/EJBO.2018.1907.1137

  • Abdel-Razik AB, Hammad IA, Tawfik E (2017) Transformation of Thionin genes using chitosan nanoparticle into potato plant to be resistant to fungal infection. IOSR J Biotechnol Biochem 3(3):1–13

    Article  Google Scholar 

  • Abd–Elsalam KA, Vasil’kov AY, Said–Galiev EE, Rubina MS, Khokhlov AR, Naumkin AV, Shtykova EV, Alghuthaymi MA (2017) Bimetallic and chitosan nanocomposites hybrid with trichoderma: novel antifungal agent against cotton soil–borne fungi. Eur J Plant Pathol. https://doi.org/10.1007/s10658–017–1349–8

  • Agnihotri AA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100(1):5–28

    Google Scholar 

  • Alves NM, Mano JF (2008) Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol 43:401–414

    Article  PubMed  CAS  Google Scholar 

  • Ambrosio L (2009) Biomedical composites. Woodhead Publishing, Cambridge

    Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  PubMed  CAS  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Badawy MEI, Rabea EI, Rogge TM, Stevens CV, Steurbaut W, Höfte M, Smagghe G (2005) Fungicidal and insecticidal activity of O-acyl chitosan derivatives. Polym Bull 54:279–289

    Article  CAS  Google Scholar 

  • Behboudi F, Tahmasebi SZ, Kassaee MZ, Modares Sanavi SAM, Sorooshzadeh A (2017) Phytotoxicity of chitosan and SiO2 nanoparticles to seed germination of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) plants. Not Sci Biol 9(2):242–249

    Article  Google Scholar 

  • Berscht PC, Nies B, Liebendorfer A, Kreuter J (1994) Incorporation of basic ibroblast growth factor into methylpyrrolidinone chitosan leeces and determination of the in vitro release characteristics. Biomaterials 15:593–600

    Article  PubMed  CAS  Google Scholar 

  • Beyki M, Zhaveh S, Tahere S, Rahmani-Cherati T, Abollahi A, Mansour B, Bayat Tabatabaei M, Mohsenifarc A (2014) Encapsulation of Mentha piperita essential oils in chitosan–cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind Crop Prod 54:310–319

    Article  CAS  Google Scholar 

  • Bharani RA, Namasivayam SKR, Shankar SS (2014) Biocompatible chitosan nanoparticles incorporated pesticidal protein beauvericin (CSNp-BV) preparation for the improved pesticidal activity against major groundnut defoliator Spodoptera litura (Fab.) (Lepidoptera; Noctuidae). Int J Chem Tech Res 6:5007–5012

    CAS  Google Scholar 

  • Bhattacharyya A, Bhaumik A, Usha Rani P, Suvra Mandal S, Epidi TT (2010) Nano- particles - a recent approach to insect pest control. Afr J Biotechnol 9(24):3489–3493

    CAS  Google Scholar 

  • Bin Hussein MZ, Hashim N, Yahaya AH, Zainal Z (2009) Controlled release formulation of agrochemical pesticide based on 4-(2,4-dichlorophenoxy)butyrate nanohybrid. J Nanosci Nanotechnol 9:2140–2147

    Article  CAS  Google Scholar 

  • Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20:433–441

    Article  PubMed  CAS  Google Scholar 

  • Borges J, Mano JF (2014) Molecular interactions driving the layer-by-layer assembly of multilayers. Chem Rev 114:8883–8942

    Article  PubMed  CAS  Google Scholar 

  • Borges J, Rodrigues LC, Reis RL et al (2014) Layer-by-layer assembly of light-responsive polymeric multilayer systems. Adv Funct Mater 24:5624–5648

    Article  CAS  Google Scholar 

  • Brunel F, El Gueddari NE, Moerschbacher BM (2013) Complexation of copper(II) with chitosan nanogels: Toward control of microbial growth. Carbohydr Polym 92(2):1348–1356

    Google Scholar 

  • Bueter CL, Specht CA, Levitz SM (2013) Innate sensing of chitin and chitosan. PLoS Pathog 9(1):e1003080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cabrera JC, Wégria G, Onderwater RCA, González G, Nápoles MC, Falcón-Rodríguez AB, Costales D, Rogers HJ, Diosdado E, González S, Cabrera G, González L, Wattiez R (2013) In: Saa Silva S et al (eds) Proc. 1st world Congresson the use of biostimulants in agriculture, Acta horticultural 1009 ISHS

    Google Scholar 

  • Cammue BPA, De Bolle MFC, Terras FRG, Proost P, Van Damme J, Rees SB, Vanderleydenand J, Broekaert WF (1992) Isolation and characterization of a novel class of plant antimicrobial peptides from Mirabilis jalapa L. seeds. J Biol Chem 267:2228–2233

    PubMed  CAS  Google Scholar 

  • Campos EVR, Proença PLF, Oliveira JL, Melville CC, Della Vechia JF, de Andrade DJ, Fraceto LF (2018) Chitosan nanoparticles functionalized with β-cyclodextrin: a promising carrier for botanical pesticides. Sci Rep 8:2067. https://doi.org/10.1038/s41598-018-20602-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caridade SG, Merino EG, Alves NM, Bermudez VZ, Boccaccini AR, Manoa JF (2013) Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis. J Mech Behav Biomed Mater 20:173–183

    Article  PubMed  CAS  Google Scholar 

  • Cea M, Cartes P, Palma G, Mora ML (2010) Atrazine efficiency in an andisol as affected by clays and nanoclays in ethylcellulose controlled release formulations. R C Suelo Nutr Veg 10:62–77

    Article  Google Scholar 

  • Celis R, Adelino MA, Hermosín MC, Cornejo J (2012) Montmorillonite–chitosan bionanocomposites as adsorbents of the herbicide clopyralid in aqueous solution and soil/water suspensions. J Hazard Mater 209:21067–21076

    Google Scholar 

  • Chandra JH, Raj LFAA, Namasivayam SKR, Bharani RSA (2013) Improved pesticidal activity of fungal metabolite from nomureae rileyi with chitosan nanoparticles. Proceedings of the international conference on advanced nanomaterials and emerging engineering technologies. Chennai. pp 387–390

    Google Scholar 

  • Chandra S, Chakarborty N, Dasgupt A, Sarkar J, Panda K, Acharya K (2015) Chitosan nanoparticle: a positive modulator of innate immune responses in plants. Sci Rep 5:1–13

    Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A 25:241–258

    Article  CAS  Google Scholar 

  • Chen J, Zou X, Liu Q, Wang F, Feng W, Wan W (2014) Combination effect of chitosan and methyl jasmonate on controlling Alternaria alternata and enhancing activity of cherry tomato fruit defense mechanisms. Crop Prot 56:31–36

    Article  CAS  Google Scholar 

  • Chirkov SN (2002) The antiviral activity of chitosan (review). Appl Biochem Microbiol 38:1–8

    Article  CAS  Google Scholar 

  • Chookhongkha N, Sopondilok T, Photchanachai S (2012) Effect of chitosan and chitosan nanoparticles on fungal growth and chilliseed quality. International conference on postharvest pest and diseas e management in exporting horticultural crops-PPDM2012 973:231–237

    Google Scholar 

  • Chookhongkha N, Sopondilok T, Photchanachai S (2013) Effect of chitosan and chitosan nanoparticles on fungal growth and chilli seed quality. Acta Hortic 973:231–237

    Article  Google Scholar 

  • Choudhary MK (2017) Development and evaluation of Cu chitosan nanocomposite for its antifungal activity against post flowering stalk rot (PFSR) disease of maize caused by Fusarium verticillioids (Sheldon). Ph.D. Thesis, Maharana Pratap University of Agriculture and Technology, Udaipur, India. 79 pages

    Google Scholar 

  • Chowdappa P, Shivakumar C, Chethana S, Madhura S (2014) Antifungal activity of chitosan-silver nanoparticles composite against Colletotrichum gloeosporioides associated with mango anthracnose. Afr J Microbiol Res 81:1803–1812

    Google Scholar 

  • Cindi MD, Shittu T, Sivakumar D, Bautista-Baños S (2015) Chitosan boehmite alumina nanocomposite films and thyme oil vapour control brown rot in peaches (Prunus persica L.) during postharvest storage. Crop Prot 72:127–131

    Article  CAS  Google Scholar 

  • Corradini E, De Moura M, Mattoso L (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4(8):509–515

    Article  CAS  Google Scholar 

  • Costa RR, Mano JF (2014) Polyelectrolyte multilayered assemblies in biomedical technologies. Chem Soc Rev 43:3453–3479

    Article  PubMed  CAS  Google Scholar 

  • Cota-Arriola O, Cortez-Rocha MO, Ezquerra-Brauer JM, Lizardi-Mendoza J, Burgos-Hernández A, Robles-Sánchez RM (2013) Ultrastructural, morphological, and antifungal properties of micro and nanoparticles of chitosan crosslinked with sodium tripolyphosphate. J Polym Environ 21:971–980

    Article  CAS  Google Scholar 

  • Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237

    Article  CAS  Google Scholar 

  • Dehaghi SM, Rahmanifar B, Moradi AM, Azar PA (2014) Removal of permethrin pesticide from water by chitosan–zinc oxide nanoparticles composite as an adsorbent. J Saudi Chem Soc 18:348–355

    Article  CAS  Google Scholar 

  • Di Carlo G, Curulli A, Toro RG, Bianchini C, De Caro T, Padeletti G, Zane D, Ingo GM (2012) Green synthesis of gold? Chitosan nanocomposites for caffeic acid sensing. Langmuir 28:5471–5479

    Article  PubMed  CAS  Google Scholar 

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dzung NA, Khanh VTP, Dung TT (2011) Research on impact of chitosan oligomer on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydr Polym 84:751–755

    Article  CAS  Google Scholar 

  • El Hadrami A, El Hadrami I, Daayf F (2009) Suppression of induced plant defense responses by fungal pathogens. In: Bouarab K, Brisson N, Daayf F (eds) Molecular-plant microbe interactions. CABI, Wallingford Chapter 10, pp 231–268

    Chapter  Google Scholar 

  • El Hassni M, El Hadrami A, Daayf F, Chérif M, Ait Barka E, El Hadrami I (2004) Chitosan, antifungal product against fusarium oxysporum f. Sp. albedinis and elicitor of defence reactions in date palm roots. Phytopathol Mediterr 43:195–204

    Google Scholar 

  • El-Sawy NM, Abd El-Rehim HA, Elbarbary AM, Hegazy E-SA (2010) Radiation-induced degradation of chitosan for possible use as a growth promoter in agricultural purposes. Carbohydr Polym 79:555–562

    Article  CAS  Google Scholar 

  • Fang H, Huang J, Ding L, Li M, Chen Z (2009) Preparation of magnetic chitosan nanoparticles and immobilization of laccase. J Wuhan Univ Technol Mater Sci Ed 24:42–47. https://doi.org/10.1007/s11595–009–1042–7

    Article  CAS  Google Scholar 

  • Faoro F, Sant S, Iriti M, Appiano A (2001) Chitosan-elicited resitance to plant viruses: a histochemical and cytochemical study. In: Muzzarelli RAA (ed) Chitin enzymology. Atec, Grottammare, pp 57–62

    Google Scholar 

  • Feng J, He J, Ma Z, Wang Z, Zhang X (2009) Plant source fruit and vegetable fresh-keeping agent and its preparation method. Patent number: CN101305747–A

    Google Scholar 

  • Fernández-Saiz P, Lagaron JM (2011) Chitosan for film and coating applications. In: Plackett D (ed) Biopolymers: new materials for sustainable films and coatings. Wiley, West Sussex, pp 87–105

    Chapter  Google Scholar 

  • Freire TM, Dutra LMU, Queiroz DC, Ricardo NMPS, Barreto K, Denardin JC, Wurm FR, Sousa CP, Correia AN, de Lima-Neto P, Fechine PBA (2016) Fast ultrasound assisted synthesis of chitosan-based magnetite nanocomposites as a modified electrode sensor. Carbohydr Polym 151:760–769

    Article  PubMed  CAS  Google Scholar 

  • Furbank RT, White RJ, Palta A, Turner NC (2004) Internal recycling of respiratory CO2 in pods of chickpea (Cicerarietinum L.): the role of pod wall, seed coat, and embryo. J Exp Bot 55:1687–1696

    Article  PubMed  CAS  Google Scholar 

  • Geng B, Jin Z, Li T, Qi X (2009) Preparation of chitosan-stabilized Fe(0) nanoparticles for removal of hexavalent chromium in water. Sci Total Environ 407:4994–5000

    Article  PubMed  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  PubMed  CAS  Google Scholar 

  • Gornik K, Grzesik M, Duda BR (2008) The effect of chitosan on rooting of gravevine cuttings and on subsequent plant growth under drought and temperature stress. J Fruit Ornamental Plant Resour 16:333–343

    Google Scholar 

  • Grillo R, Pereira AES, Nishisaka CS, de Lima R, Oehlke K, Greiner R, Fraceto LF (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 278:163–171

    Article  PubMed  CAS  Google Scholar 

  • Guan H, Chi D, Yu J, Li X (2008) A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-Imidacloprid. Pestic Biochem Physiol 92:83–91

    Article  CAS  Google Scholar 

  • Guan YJ, Hu J, Wang XJ, Shao CX (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B 10:427–433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hammerschmidt R (1999) Phytoalexins: what have we learned after 60 years? Annu Rev Phytopathol 37:285–306

    Article  PubMed  CAS  Google Scholar 

  • Hasaneen MNA, Abdel-Aziz HMM, El-Bialy DMA, Omer AM (2014) Preparation of chitosan nanoparticles for loading with NPK. Afr J Biotech 13:3158–3164

    Article  CAS  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  PubMed  CAS  Google Scholar 

  • Higueras L, López-Carballo G, Cerisuelo JP et al (2013) Preparation and characterization of chitosan/HP-β-cyclodextrins composites with high sorption capacity for carvacrol. Carbohydr Polym 97:262–268

    Article  PubMed  CAS  Google Scholar 

  • Hussain MR, Devi RR, Maji TK (2012) Controlled release of urea from chitosan microspheres prepared by emulsification and cross-linking method. Iran Polym J 21:473–479

    Article  CAS  Google Scholar 

  • Hwang IC, Kim TH, Bang SH, Kim KS, Kwon HR, Seo MJ, Youn YN, Park HJ, Yasunaga-Aoki C, Yu YM (2011) Insecticidal effect of controlled release formulations of etofenprox based on nano-bio technique. J Fac Agric Kyushu Univ 56:33–40

    CAS  Google Scholar 

  • Ibrahima EA, Ramadan WA (2015) Effect of zinc foliar spray alone and combined with humic acid or/and chitosan on growth, nutrient elements content and yield of dry bean (Phaseolus vulgaris L.) plants sown at different dates. Sci Hortic 184:101–105

    Article  CAS  Google Scholar 

  • Ichikawa S, Iwamoto S, Watanabe J (2005) Formation of biocopmpatible nanoparticles by selfassembly of enzymatic hydrolysates of chitosan and carboxymethyl cellulose. Biosci Biotechnol Biochem 69:1637–1642 PMID: 16195579

    Article  PubMed  CAS  Google Scholar 

  • Iler RK (1966) Multilayers of colloidal particles. Colloid Interf Sci J 21:569–594

    Article  CAS  Google Scholar 

  • Ing LY, Zin NM, Sarwar A, Katas H (2012) Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater 2012:632698. https://doi.org/10.1155/2012/632698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaiswal M, Chauhan D, Sankararamakrishnan N (2012) Copper chitosan nanocomposites: synthesis, characterization, and application in removal of organophosphorous pesticide from agricultural runoff. Environ Sci Pollut Res 19:2005–2062

    Article  CAS  Google Scholar 

  • Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmo schusesculentus and its antifungal activity. Ind Crop Prod 45:423–429

    Article  CAS  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Juárez-Maldonado A, Ortega-Ortiz, H, Pérez-Labrada F, Cadenas-Pliego G, Benavidez-Mendoza A (2016) Cu nanoparticle absorbed on chitosan hydrogels positively alter morphological production and quality characteristics of tomato. J Appl Bot Food Qual 89:183–189

    Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

    Article  PubMed  CAS  Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK, Sharma AK (2013) Myconanotechnology in agriculture: a perspective. World J Microbiol Biotechnol 29(2):191–207

    Article  PubMed  CAS  Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    Article  PubMed  CAS  Google Scholar 

  • Katiyar D, Hemantarajan A, Sing B (2015) Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian J Plant Physiol 20(1):1–9

    Article  CAS  Google Scholar 

  • Kaur P, Thakur R, Choudhary A (2012) An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int J Sci Technol Res 1:83–86

    Google Scholar 

  • Kendra DF, Hadwiger LA (1984) Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation by Pisum sativum. Exp Mycol 8:276–281

    Article  CAS  Google Scholar 

  • Khalili ST, Mohsenifar A, Beyki M, Zhaveh S, Rahmani-Cherati T, Bayat M et al (2015) Encapsulation of thyme essential oils in chitosan–benzoic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. LWT Food Sci Technol 60:502–508

    Article  CAS  Google Scholar 

  • Kheiri A, Moosawi Jorf SA, Malihipour A, Saremi H, Nikkhah M (2016) Application of chitosan and chitosan nanoparticles for the control of fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse. Int J Biol Macromol 93:1261–1272

    Article  PubMed  CAS  Google Scholar 

  • Kiang T, Wen J, Lim HW, Leong KW (2004) The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials 25(22):5293–5301

    Article  PubMed  CAS  Google Scholar 

  • Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koping-Hoggard M, Mel’nikova YS, Varum KM, Lindman B, Artursson B (2003) Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene delivery system in vitro and in vivo. J Gene Med 5:30–141

    Article  CAS  Google Scholar 

  • Kowalski B, Terry FJ, Herrera L, Peñalver DA (2006) Application of soluble chitosan in vitro and in the greenhouse to increase yield and seed quality of potato minitubers. Potato Res 49:167–176

    Article  CAS  Google Scholar 

  • Kulikov SN, Chirkov SN, Il’ina AV, Lopatin SA, Varlamov VP (2006) Effect of the molecular weight of chitosan on its antiviral activity in plants. Prikl Biokhim Mikrobiol 42(2):224–228

    PubMed  CAS  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39:26–32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lao S-B, Zhang Z-X, Xu H-H, Jiang G-B (2010) Novel amphiphilic chitosan derivatives: synthesis, characterization and micellar solubilization of rotenone. Carbohydr Polym 82:1136–1142

    Article  CAS  Google Scholar 

  • Lee P-W, Peng S-F, Su C-J, Mi F-L, Chen H-L, Wei M-C, Lin H-J, Sung H-W (2008) The use of biodegradable polymeric nanoparticles in combination with a low-pressure gene gun for transdermal DNA delivery. Biomaterials 29:742–751

    Article  PubMed  CAS  Google Scholar 

  • Li SJ, Zhu TH (2013) Biochemical response and induced resistance against anthracnose (Colletotrichum camelliae) of camellia (Camellia pitardii) by chitosan oligosaccharide application. For Pathol 43:67–76. https://doi.org/10.1111/j.1439-0329.2012.00797

    Article  Google Scholar 

  • Li B, Wang GL, Wu ZY, Qiu W, Tang QM, Xie GL (2009a) First report of bacterial head rot of broccoli caused by Pseudomonas fluorescens in China. Plant Dis 93:12–19

    Google Scholar 

  • Li B, Yu RR, Yu SH, Qiu W, Fang Y, Xie GL (2009b) First report on bacterial heart rot of garlic caused by Pseudomonas fluorescens in China. Plant Pathol J 25:91–94

    Article  Google Scholar 

  • Li B, Fang Y, Zhang GQ, Yu RR, Lou MM, Xie GL, Wang YL, Sun GC (2010) Molecular characterization of Burkholderia cepacia complex isolates causing bacterial fruit rot of apricot. Plant Pathol J 26:223–230

    Article  CAS  Google Scholar 

  • Li C, Guo T, Zhou D, Hu Y, Zhou H, Wang S, Chen J, Zhang Z (2011) A novel glutathione modified chitosan conjugate for efficient gene delivery. J Control Release 154:177–188

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Yan L, Heiden P, Laks P (2001) Use of nanoparticles for controlled release of biocides in solid wood. J Appl Polym Sci 79:458–465

    Article  CAS  Google Scholar 

  • Liu H, Cai X, Wang Y, Chen J (2011) Adsorption mechanism-based screening of cyclodextrin polymers for adsorption and separation of pesticides from water. Water Res 45:3499–3511

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Tian WX, Li B, Wu GX, Ibrahim M, Tao ZY, Wang YL, Xie GL, Li HY, Sun GC (2012) Antifungal effect and mechanism of chitosan against the rice sheath blight pathogen, Rhizoctonia solani. Biotechnol Lett 34:2291–2298

    Article  PubMed  CAS  Google Scholar 

  • Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24:19–29

    Article  CAS  Google Scholar 

  • Lopez-Leon T, Carvalho ELS, Seijo B, OrtegaVinuesa JL, Bastos-Gonzalez D (2005) Physicochemical characterization of chitosan nanoparticles: Electrokinetic and stability behavior. Colloid Interf Sci J 283:344–351. https://doi.org/10.1016/j.jcis.2004.08.186

    Article  CAS  Google Scholar 

  • Lou MM, Zhu B, Muhammad I, Li B, Xie GL, Wang YL, Li HY, Sun GC (2011) Antibacterial activity and mechanism of action of chitosan solutions against apricot fruit rot pathogen Burkholderia seminalis. Carbohydr Res 346:1294–1301. https://doi.org/10.1016/j.carres.2011.04.042

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Li J, Yy YCM, Wang Y, Xm L, Li N (2014) Germination and physiological response of wheat (Triticum aestivum) to pre-soaking with oligochitosan. Int J Agric Biol 16:766–770

    Google Scholar 

  • Malerba M, Cerana R (2016) Chitosan effects on plant systems. Int J Mol Sci 17:996. https://doi.org/10.3390/ijms17070996

    Article  PubMed Central  CAS  Google Scholar 

  • Malerba M, Crosti P, Cerana R (2012) Defense/stress responses activated bychitosan in sycamore cultured cells. Protoplasma 249:89–98. https://doi.org/10.1007/s00709–011–0264–7

    Article  PubMed  CAS  Google Scholar 

  • Manikandan A, Sathiyabama M (2016) Preparation of chitosan nanoparticles and its effect on detached rice leaves infected with Pyricularia grisea. Int J Biol Macromol 84:58–61

    Article  PubMed  CAS  Google Scholar 

  • Mano JF (2008) Stimuli-responsive polymeric systems for biomedical applications. Adv Eng Mater 10:515–527

    Article  CAS  Google Scholar 

  • Mao S, Sun W, Kissel T (2010) Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev 62:12–27

    Article  PubMed  CAS  Google Scholar 

  • Martelli MR, Barros TT, de Moura MR, Mattoso LH, Assis OB (2013) Effect of chitosan nanoparticles and pectin content on mechanical properties and water vapor permeability of banana puree films. J Food Sci 78:N98–N104

    Article  PubMed  CAS  Google Scholar 

  • Martins A, Reis RL, Neves NM (2008) Electrospinning: processing technique for tissue engineering scaffolding. Int Mater Rev 53:257–274

    Article  CAS  Google Scholar 

  • Maruyama CR, Guilger M, Pascoli M et al (2016) Nanoparticles based on chitosan as carriers for the combined herbicides Imazapic and Imazapyr. Sci Rep 6:19768. https://doi.org/10.1038/srep19768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathew T, Kuriakose S (2013) Photochemical and antimicrobial properties of silver nanoparticle-encapsulated chitosan functionalized with photoactive groups. Mater Sci Eng C 33:4409–4415

    Article  CAS  Google Scholar 

  • Meng XH, Yang LY, Kennedy JF, Tian SP (2010) Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydr Polym 81:70–75

    Article  CAS  Google Scholar 

  • Mihindukulasuriya SDF, Lim LT (2014) Nanotechnology development in food packaging: a review. Trends Food Sci Technol 40:149–167

    Article  CAS  Google Scholar 

  • Mohammadi A, Hashemi M, Hosseini SM (2015) Chitosan nanoparticles loaded with Cinnamomum zeylanicum essential oil enhance the shelf life of cucumber during cold storage. Postharvest Biol Technol 110:203–213

    Article  CAS  Google Scholar 

  • Molina EB, Mejía LZ (2016) New bioactive biomaterials based on chitosan A2 – Baños B, Silvia. In: Chitosan in the preservation of agricultural commodities. Chapter 2, pp 33–64, Academic Press, Elsevier, USA

    Google Scholar 

  • Moura D, Mano JF, Paiva MC, Alves NM (2016) Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications. Sci Technol Adv Mater 17(1):626–643

    Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Sakthi Kumar D (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Namasivayam SKR, Aruna A, Gokila G (2014) Evaluation of silver nanoparticles-chitosan encapsulated synthetic herbicide paraquat (AgNp-CS-PQ) preparation for the controlled release and improved herbicidal activity against Eichhornia crassipes. Res J Biotechnol 9:19–27

    Google Scholar 

  • Nguyen VS, Dinh MH, Nguyen AD (2013) Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatal Agric Biotechnol 2:289–294

    Google Scholar 

  • Palerice DRG, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–309

    Article  CAS  Google Scholar 

  • Palma-Guerrero J, López-Jiménez JA, Pérez-Berná AJ, Huang IC, Jansson HB, Salinas J, Villalaín J, Read ND, Lopez-Llorca LV (2010) Membrane fluidity determines sensitivity of fiamentous fungi to chitosan. Mol Microbiol 75:1021–1032

    Article  PubMed  CAS  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica–silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Park Y, Kim MH, Park SC, Cheong H, Jang MK, Nah JW, Hahm KS (2008) Investigation of the antifungal activity and mechanism of action of LMWS-chitosan. J Microbiol Biotechnol 18:1729–1734

    PubMed  CAS  Google Scholar 

  • Perez-de-Luque A, Cifuentes Z, Beckstead JA, Sillero JC, Anila C, Rubio J, Ryan RO (2012) Effect of amphotericin B nanodisks on plant fungal disease. Pest Manag Sci 68:67–74

    Article  PubMed  CAS  Google Scholar 

  • PichyaIriti M, Varoni EM (2015) Chitosan-induced antiviral activity and innate immunity in plants. Environ Sci Pollut Res 22:2935–2944

    Article  CAS  Google Scholar 

  • Pospieszny H, Chirkov S, Atabekov J (1991) Induction of antiviral resistance in plants by chitosan. Plant Sci 79:63–68

    Article  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart:963961. https://doi.org/10.1155/2014/963961

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Gupta N, Kumar M, Kumar V, Abd-Elsalam KA (2017b) Nanomaterials acts as plant defense mechanism. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology: food and environmental paradigm. Springer Pvt Ltd, Cham, pp 253–269

    Chapter  Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700

    Article  PubMed  CAS  Google Scholar 

  • Qiu M, Wu C, Ren G, Liang X, Wang X, Huang X (2014) Effect of chitosan and its derivatives as antifungal and preservative agents on postharvest green asparagus. Food Chem155:105–111

    Google Scholar 

  • Rabea EI, Badawy MEI, Rogge TM, Stevens CV, Hofte M, Steurbaut W, Smagghe G (2005) Insecticidal and fungicidal activity of new synthesized chitosan derivatives. Pest Manag Sci 61:951–960

    Article  PubMed  CAS  Google Scholar 

  • Racovita S, Vasiliu S, Popa M, Luca C (2008) Polysaccharides based on micro-and nanoparticles obtained by ionic gelation and their applications as drug delivery systems. Rev Roum Chim 54:709–718

    Google Scholar 

  • Raftery R, O’Brien FJ, Cryan SA (2013) Chitosan for gene delivery and orthopedic tissue engineering applications. Molecules 18:5611–5647

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ragelle H, Vandermeulen G, Préa V (2013) Chitosan-based siRNA delivery systems. J Control Release 172:207–218

    Article  PubMed  CAS  Google Scholar 

  • Raho N, Ramirez L, Lanteri ML, Gonorazky G, Lamattina L, ten Have A, Laxalt AM (2011) Phosphatidic acid production in chitosan-elicited tomato cells, via both phospholipase D and phospholipase C/diacylglycerol kinase, requires nitric oxide. J Plant Physiol 168:534–539. https://doi.org/10.1016/j.jplph.2010.09.004

    Article  PubMed  CAS  Google Scholar 

  • Reddy MV, Arul J, Angers P, Couture L (1999) Chitosan treatment of wheat seeds induces resistance to Fusarium graminearun and improves seed quality. J Agric Food Chem 47:1208–1216

    Article  CAS  Google Scholar 

  • Reglinski T, Elmer PAG, Taylor JT, Wood PN, Hoyte SM (2010) Inhibition of Botrytis cinerea growth and suppression of botrytis bunch rot in grapes using chitosan. Plant Pathol 59:882–890

    Article  CAS  Google Scholar 

  • Rhim JW, Hong SI, Park HM, Ng PKW (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobialactivity. J Agric Food Chem 54:5814–5822

    Article  PubMed  CAS  Google Scholar 

  • Rhoades J, Roller S (2000) Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Appl Environ Microbiol 66:80–86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richardson JJ, Bjornmalm M, Caruso F (2015) Multilayer assembly. Technology-driven layer-by-layer assembly of nanofilms. Science (New York, NY) 348:2348–2491

    Article  CAS  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  • Rubina RS, Vasil’kov AY, Naumkin AV, Shtykova EV, Abramchuk SS, Alghuthaymi MA, Abd–Elsalam KA (2017) Synthesis and characterization of chitosan–copper nanocomposites and their fungicidal activity against two sclerotia–forming plant pathogenic fungi. J Nanostruct Chem. https://doi.org/10.1007/s40097–017–0235–4

  • Sabbour MM (2016) Observations of the effect of Nano chitosan against the locust Schistocerca gregaria (Orthoptera: Acrididae). J Nanosci Nanoengin 2:28–33

    Google Scholar 

  • Sahab AF, Waly AI, Sabbour MM, Lubna SN (2015) Synthesis, antifungal and insecticidal potential of chitosan (CS)-g-poly (acrylic acid) (PAA) nanoparticles against some seed borne fungi and insects of soybean. Int J ChemTech Res 8(2):589–598

    CAS  Google Scholar 

  • Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683

    Article  PubMed  CAS  Google Scholar 

  • Saharan V, Khatik R, Choudhary MK, Mehrotra A, Jakhar S, Raliya R, Nallamuthu I, Pal A (2014) Nano-materials for plant protection with special reference to Nano chitosan. In: Proceedings of 4th annual international conference on advances in biotechnology. GSTF, Dubai, pp 23–25

    Google Scholar 

  • Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A, Biswas P (2015) Synthesis and in vitro antifungal efficacy of cu–chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 75:346–353

    Article  PubMed  CAS  Google Scholar 

  • Saharan V, Kumaraswamy RV, Choudhary RC, Kumari S, Pal A, Raliya R, Biswas P (2016) Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. J Agric Food Chem 64(31):6148–6155

    Article  PubMed  CAS  Google Scholar 

  • Saifuddin N, Nian CY, Zhan LW, Ning KX (2011) Chitosan-silver nanoparticles composite as point of-use drinking water filtration system for household to remove pesticides in water. Asian J Biochem 6:142–159

    Article  CAS  Google Scholar 

  • Sailaja AK, Amareshwar P, Chakravarty P (2013) Chitosan nanoparticles as a drug delivery system. Res J Pharm Biol Chem Sci 1(3):474–484

    Google Scholar 

  • Salaberria AM, Diaz RH, Andrés MA, Fernandes SCM, Labidi J (2017) The antifungal activity of functionalized chitin nanocrystals in poly (Lactid acid) films. Anzai J, ed. Materials 10(5):546

    Article  PubMed Central  Google Scholar 

  • Sánchez EA, Tiznado HME, Ojeda CAJ, Valenzuela-Quintanar AI, Troncoso-Rojas R (2009) Induction of enzymes and phenolic compounds related to the natural defence response of netted melon fruit by a bio-elicitor. J Phytopathol 157:24–32

    Article  CAS  Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. pp 73–97, Springer Nature, Singapore Pte Ltd.

    Google Scholar 

  • Sanuja S, Agalya A, Umapathy MJ (2015) Synthesis and characterization of zinc oxide–neem oil–chitosan bionanocomposite for food packaging application. Int J Biol Macromol 74:76–84

    Article  PubMed  CAS  Google Scholar 

  • Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013). Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683

    Google Scholar 

  • Sarmento B, Neves J (2012) Chitosan-based systems for biopharmaceuticals: deliver, targeting and polymer therapeutics. John Wiley & Sons, Ltd.

    Google Scholar 

  • Shantha Siri JG, Fernando CAN, De Silva N (2017) Eco-friendly chitosan nanoparticles cross linked with genipin: basis to develop control release nanofertilizer. J SciTech Res 7:26–31

    Google Scholar 

  • Sharon M, Choudhary A, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2:83–92

    Google Scholar 

  • Sharp RG (2013) A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy 3:757–793

    Article  CAS  Google Scholar 

  • Shi LE, Fang XJ, Xing LY, Chen M, Zhu DS et al (2011) Chitosan nanoparticles as drug delivery carriers for biomedical engineering. J Chem So Pak 33:929–934

    CAS  Google Scholar 

  • Shikata F, Tokumitsu H, Ichikawa H, Fukumori Y (2002) In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer. Eur J Pharm Biopharm 53:57–63 PMID: 11777753

    Article  PubMed  CAS  Google Scholar 

  • Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58

    Article  PubMed  CAS  Google Scholar 

  • Siddaiah CN, Prasanth KVH, Satyanarayana NR, Mudili V, Gupta VK, Kalagatur NK, Satyavati T, Dai XF, Chen JY, Mocan A, Singh BP, Srivastava RK (2018) Chitosan nanoparticles having higher degree of acetylation induce resistance against pearl millet downy mildew through nitric oxide generation. Sci Rep 8(1):2485. https://doi.org/10.1038/s41598-017-19016-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. Nanotech Plant Sci:19–35. https://doi.org/10.1007/978-3-319-14502-0-2

  • Silva MS, Cocenza DS, Grillo R, de Melo NFS, Tonello POS, deOliveira LC, Cassimiro DL, Rosa AH, Fraceto LF (2011) Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J Hazard Mater 190:366–374

    Article  CAS  Google Scholar 

  • Sivamani E, DeLong RK, Qu R (2009) Protamine-mediated DNA coating remarkably improves bombardment transformation efficiency in plant cells. Plant Cell Rep 28:213–221

    Article  PubMed  CAS  Google Scholar 

  • Sotelo-Boyás ME, Bautista-Baños S, Correa-Pacheco ZN, Jiménez-Aparicio A, Sivakumar D (2016) Biological activity of chitosan nanoparticles against pathogenic fungi and bacteria. Chapter 13. In: Bautista-Banos S, Romanazzi G, Jiménez-Aparicio A (eds) Chitosan in the preservation of agricultural commodities, pp 339–349,  Academic Press, Elsevier, USA

    Google Scholar 

  • Sun B, Zhang L, Yang L, Zhang F, Norse D, Zhu Z (2012) Agricultural non-point source pollution in China: causes and mitigation measures. Ambio 41:370–337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swati, Choudhary MK, Joshi A, Saharan V (2017) Assessment of cu-chitosan nanoparticles for its antibacterial activity against Pseudomonas syringae pv. glycinea. Int J Curr Microbiol App Sci 6(11):1335–1350

    Article  Google Scholar 

  • Tan H, Ma R, Lin C, Liu Z, Tang T (2013) Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci 14:1854–1869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tao S, Pang R, Chen C et al (2012) Synthesis, characterization and slow release properties of O-naphthylacetyl chitosan. Carbohydr Polym 88:1189–1194

    Article  CAS  Google Scholar 

  • Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnolgy 17:R89–R106

    Article  CAS  Google Scholar 

  • Tiyaboonchai W (2003) Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ J 11:51–66

    Google Scholar 

  • Vander P, Vaêrum KM, Domard A, El Gueddari NE, Moerschbacher BM (1998) Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiol 118:1353–1359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vasyukova NI, Zinovèva SV, Ilìnskaya LI, Perekhod EA, Chalenko GI, Gerasimova NG, Il’ina AV, Varlamov VP, Ozeretskovskaya OL (2001) Modulation of plant resistance to diseases by water-soluble chitosan. App Biochem Microbiol 37:103–109

    Article  CAS  Google Scholar 

  • Wang X, El Hadrami A, Adam LR, Daayf F (2008) Differential activation and suppression of potato defence responses by Phytophthora infestans isolates representing US-1 and US-8 genotypes. Plant Pathol 57:1026–1037

    Article  CAS  Google Scholar 

  • Wang Q, Chen JN, Zhan P, Zhang L, Kong QQ (2013) Establishment of a suspension cell system for transformation of Jatropha curcas using nanoparticles. Adv Mater Res 608–609:314–319

    Article  Google Scholar 

  • Wang P, Lombi E, Zhao FJ, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712

    Article  PubMed  CAS  Google Scholar 

  • Wani IA, Ahmad T (2013) Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Colloids Surf B101:162–170

    Article  CAS  Google Scholar 

  • Wazed AS, Joshi M, Rajendran S (2011) Novel, selfassembled antimicrobial textile coating containing chitosan nanoparticles. AATCC Rev 11:49–55

    Google Scholar 

  • Wen Y, Yuan Y, Chen H et al (2010) Effect of chitosan on the enantioselective bioavailability of the herbicide dichlorprop to Chlorella pyrenoidosa. Environ Sci Technol 44:4981–4949

    Article  PubMed  CAS  Google Scholar 

  • Wen Y, Chen H, Yuan Y et al (2011) Enantioselective ecotoxicity of the herbicide dichlorprop and complexes formed with chitosan in two fresh water green algae. J Environ Monitor JEM 13:879–88587

    Article  CAS  Google Scholar 

  • Wong MH, Misra RP, Giraldo JP, Kwak SY, Son Y, Landry MP, Swan JW, Blankschtein D, Strano MS (2016) Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett 16:1161–1172

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Liu M (2008) Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water retention. Carbohydr Polym 72:240–247

    Article  CAS  Google Scholar 

  • Wu L, Liu M, Liang R (2008) Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. Bioresour Technol 99:547–554

    Article  PubMed  CAS  Google Scholar 

  • Xing K, Zhu X, Peng X, Qin S (2014) Chitosan antimicrobial and eliciting properties for pest control in agricultural: a review. Agron Sustain Dev 35(2):569–588

    Article  CAS  Google Scholar 

  • Xing K, Zhu X, Peng X, Qin S (2015) Chitosan antimicrobial and eliciting prop erties for pest control in agriculture: a review. Agronomy for sustainable development. Springer Verlag/EDP Sci/INRA 35(2):569–588

    CAS  Google Scholar 

  • Xing K, Shen X, Zhu X, Ju X, Miao X, Tian J, Feng Z, Peng X, Jiang J, Qin S (2016) Synthesis and in vitro antifungal efficacy of oleoyl-chitosan nanoparticles against plant pathogenic fungi. Int J Biol Macromol 82:830–836

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Cao LD, Li FM, Wang XJ, Huang QLJ (2014) Utilization of chitosan-lactide copolymer nanoparticles as controlled release pesticide carrier for pyraclostrobin against Colletotrichum gossypii Southw. Dispers Sci Technol 35:544–550

    Article  CAS  Google Scholar 

  • Yu-qin F, Lu-hua L, Pi-wu W, Jing Q, Yong-ping F, Hui W, Jing-ran S, Chang-li L (2012) Delivering DNA into plant cell by gene carriers of ZnS nanoparticles. Chem Res Chin Univ 28(4):672–676

    Google Scholar 

  • Zahid N, Alderson P, Ali A, Maqbool M, Manickam S (2013) In vitro control of Colletotrichum gloeosporioides by using chitosan loaded nanoemulsions. Acta Hortic 1012:769–774

    Article  Google Scholar 

  • Zeng D, Luo X, Tu R (2012) Application of bioactive coatings based on chitosan for soybean seed protection. Int J Carbohydr Chem 1:1–5

    Article  CAS  Google Scholar 

  • Zhang X, Zhang J, Zhu KY (2010) Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol 19(5):683–693

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, She X, Du Y, Liang X (2007) Induction of antiviral resistance and stimulary effect by oligochitosan in tobacco. Pestic Biochem Phys 87:78–84

    Article  CAS  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91

    Article  PubMed  CAS  Google Scholar 

  • Zheng YY, Monty J, Linhardt RJ (2015) Polysaccharide-based nanocomposites and their applications. Carbohydr Res 405:23–32

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Science and Technology Development Fund (STDF), Joint Egypt (STDF)–South Africa (NRF) Scientific Cooperation, Grant ID. 27837 to Kamel Abd-Elsalam.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Dhabaan, F.A., Mostafa, M., Almoammar, H., Abd-Elsalam, K.A. (2018). Chitosan-Based Nanostructures in Plant Protection Applications. In: Abd-Elsalam, K., Prasad, R. (eds) Nanobiotechnology Applications in Plant Protection. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-91161-8_13

Download citation

Publish with us

Policies and ethics