Skip to main content

Features of Spin Transport in Magnetic Nanostructures with Nonmagnetic Metal Layers

  • Conference paper
  • First Online:
Nanooptics, Nanophotonics, Nanostructures, and Their Applications (NANO 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 210))

Included in the following conference series:

  • 566 Accesses

Abstract

The spin transport through and near interfaces have been studied in magnet/normal metal-based multilayer magnetic nanostructures in magnetostatic and magneto-dynamic cases. Its features and accompanying effects, such as the magnetoresistance or the magnetic precession-induced spin pumping and spin accumulation in adjacent normal metal, are determined by the spin-dependent scattering on the interface. These effects are governed by the entire spin-coherent region that is limited in size by spin-flip relaxation processes and can be controlled by the spin-polarized current of different origins including the spin Hall effect. Conditions of realization of the mentioned spin currents in the multilayer magnetic nanostructures are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akerman J (2005) Toward a Universal Memory. Science 308:508

    Article  Google Scholar 

  2. Barder SD, Parkin SSP (2010) Spintronics. Ann Rev Cond Matt Phys 1:71

    Article  ADS  Google Scholar 

  3. Bauer GEW (1992) Perpendicular transport through magnetic multilayers. Phys Rev Lett 9:1676

    Article  ADS  Google Scholar 

  4. Binash G, Grűnberg P, Saurenbach F, Ziman W (1989) Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B 39:4828

    Article  ADS  Google Scholar 

  5. Braganca PM, Guney BA, Wilson BA, Katine JA, Maat S, Childress JR (2010) Nanoscale magnetic field detection using a spin torque oscillator. Nanotechnology 21:235202

    Article  ADS  Google Scholar 

  6. Brataas A, Nazarov YV, Inoue J, Bauer GEW (1999) Spin accumulation in small ferromagnetic double barrier junctions. Phys Rev B 59:93

    Article  ADS  Google Scholar 

  7. Brataas A, Nazarov YV, Bauer GEW (2001) Spin-transport in multi-terminal normal-metal – ferromagnet systems with non-collinear magnetization. Eur Phys J B22:99

    Article  ADS  Google Scholar 

  8. Bűttiker M (1986) Four-terminal Phase-Coherent Conductance. Phys Rev Lett 57:1761

    Article  ADS  Google Scholar 

  9. Cheng R, Zhu J-G, Xiao D (2016) Dynamic Feedback in Ferromagnet/Spin-Hall Heterostructures. Phys Rev Lett 117:097202

    Article  ADS  Google Scholar 

  10. Danilewicz P (1984) Quantum theory of Nonequilibrium Processes. Ann Phys 152:234

    ADS  Google Scholar 

  11. Fisher J, Gomonay O, Schlitz R, Ganzhom KN, Vestra H, Althammer M, et al (2017) Spin Hall magnetoresistance in antiferromagnet/normal metal heterostructures. arXiv:cond-mat.mes-hall

    Google Scholar 

  12. Gijos MAM, Bauer GEW (1997) Perpendicular giant magnetoresistance of magnetic multilayers. Adv Phys 46:285

    Article  ADS  Google Scholar 

  13. Huertas D, Hemando A, Brataas A, Nazarov YV, Bauer GEW (2000) Conductance modulation by spin precessing in noncollinear ferromagnet/normal metal ferromagnetic multilayers. Phys Rev B 62:5700

    Article  ADS  Google Scholar 

  14. Katine J, Fullerton EF (2008) Device implications of spin-transfer torque. J Magn Magn Mater 320:1217

    Article  ADS  Google Scholar 

  15. Manchon A, Stelkova N, Ryzhanova A, Vedyaeva BA, Dienya BB, Slonczewski JC (2007) Theoretical investigation of the relationship between spin torque and magnetoresistance in spin-valves and magnetic tunnel junctions. J Magn Magn Mater 316:L977

    Article  ADS  Google Scholar 

  16. Manchon A, Koo HC, Nitta J, Frolov SM, Duine RA (2015) New Perspective for Rashba Spin-Orbit Coupling. Nat Mater 36:871

    Article  ADS  Google Scholar 

  17. Matsunaga S, Hiyama K, Matsumoto A, Ikeda S, Hasegawa H, Miura K, Hayakawa J, Endoh T, Ohno H, Hanyu T (2009) Standby-power-free compact ternary content-addressable memory cell chip using magnetic tunnel junction devices. Appl Phys Express 2:023004

    Article  ADS  Google Scholar 

  18. Miron IM, Gaudin G, Auffer S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Gambardalla P (2010) Current-driven spin torque induced by the Rashba effect in ferromagnetic metal layer. Nat Mater 9:230

    Article  ADS  Google Scholar 

  19. Myöhänem P, Stan A, Stefanucci G, Leeuwen R (2009) Kadanoff-Baym approach to quantum transport through interacting nanoscale systems: From the transient to the steady-state regime. Phys Rev B 80:115107

    Article  ADS  Google Scholar 

  20. Nagasaka K (2009) CPP-GMR technology for magnetic read heads of future high-density recording systems. J Magn Magn Mater 321:508

    Article  ADS  Google Scholar 

  21. Silva TJ, Rippard WH (2008) Developments in nano-transfer point-contact devices. J Magn Magn Mater 320:1260

    Article  ADS  Google Scholar 

  22. Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159:L1

    Article  ADS  Google Scholar 

  23. Tserkovnyak Y, Brataas A, Bauer GEW (2002) Spin pumping and magnetization dynamics in metallic multilayers. Phys Rev B 66:224403

    Article  ADS  Google Scholar 

  24. Tserkovnyak Y, Brataas A, Bauer GE, Halperin BI (2005) Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev Mod Phys 77:1375

    Article  ADS  Google Scholar 

  25. Waintal X, Myers EB, Brouwer PW, Ralph DC (2000) Role of spin-dependent interface scattering in generating current-induced torques in magnetic multilayers. Phys Rev B 62:12317

    Article  ADS  Google Scholar 

  26. Zutic L, Fabian J, Sarma SD (2004) Spintronics: fundamentals and applications. Rev Mod Phys 77:323

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Korostil, A.M., Krupa, M.M. (2018). Features of Spin Transport in Magnetic Nanostructures with Nonmagnetic Metal Layers. In: Fesenko, O., Yatsenko, L. (eds) Nanooptics, Nanophotonics, Nanostructures, and Their Applications. NANO 2017. Springer Proceedings in Physics, vol 210. Springer, Cham. https://doi.org/10.1007/978-3-319-91083-3_13

Download citation

Publish with us

Policies and ethics