Skip to main content

Excretory Functions of the Gastrointestinal Tract. Defecation

  • Chapter
  • First Online:
  • 2344 Accesses

Abstract

The gastrointestinal (GI) represents a critical hub where certain by-products of metabolism are channeled for removal from the body. Disorders that affect the excretion of metabolic waste products from the gut can have serious consequences to health. Furthermore, the undigested products of metabolism are also removed from the distal gut. This ensures continuous and adequate functioning of the GI tract, which are all required to maintain ongoing life processes. This chapter deals with the metabolic products produced in the gut that are channeled for removal as well as the evacuation of the residual wastes of digestion and the associated health implications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

GI:

Gastrointestinal

ALAT:

Alanine transaminase

ASAT:

Aspartate aminotransferases

gammaGT:

Gamma-glutamyltransferase

ALP:

Alkaline phosphatase

GC-C:

Guanylate cyclase C

Bibliography

  1. Bergen WG, Wu G (2009) Intestinal nitrogen recycling and utilization in health and disease. J Nutr 139(5):821–825

    Article  CAS  PubMed  Google Scholar 

  2. Ross AC, Taylor CL, Yaktine AL, Del Valle HB (eds) (2011) Dietary reference intakes for calcium and vitamin D. National Academies Press, Washington, DC, USA

    Google Scholar 

  3. Fried DE, Watson RE, Robson SC, Gulbransen BD (2017) Ammonia modifies enteric neuromuscular transmission through glial γ-aminobutyric acid signaling. Am J Physiol Gastrointest Liver Physiol 313(6):G570–G580

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pereverzev VA, Lobanok LM (2014) Physiology of digestion. In: Kubarko AI (ed) Normal physiology. Visheishaya Shkola, Minsk, Belarus

    Google Scholar 

  5. Nikitina OS, Welcome MO, Pereverzev VA (2016) Human anatomy and physiology. Belarusian State Medical University Press, Minsk

    Google Scholar 

  6. Bassotti G, Antonelli E, Villanacci V, Baldoni M, Dore MP (2014) Colonic motility in ulcerative colitis. United Eur Gastroenterol J 2(6):457–462

    Article  Google Scholar 

  7. Weiner ID, Verlander JW (2003) Renal and hepatic expression of the ammonium transporter proteins, Rh B Glycoprotein and Rh C Glycoprotein. Acta Physiol Scand 179(4):331–338

    Article  CAS  PubMed  Google Scholar 

  8. Handlogten ME, Hong S-P, Zhang L, Vander AW, Steinbaum ML, Campbell-Thompson M, Weiner ID (2005) Expression of the ammonia transporter proteins Rh B glycoprotein and Rh C glycoprotein in the intestinal tract. Am J Physiol Gastrointest Liver Physiol 288(5):G1036–G1047

    Article  CAS  PubMed  Google Scholar 

  9. Randall DJ (2011) Nitrogenous-waste balance: excretion of ammonia. In: Farrell A (ed) Encyclopedia of fish physiology: from genome to environment. Academic Press, MA, USA

    Google Scholar 

  10. Vince AJ, Burridge SM (1980) Ammonia production by intestinal bacteria: the effects of lactose, lactulose and glucose. J Med Microbiol 13(2):177–191

    Article  CAS  PubMed  Google Scholar 

  11. van de Poll MCG, Ligthart-Melis GC, Olde Damink SWM, van Leeuwen PAM, Beets-Tan RGH, Deutz NEP et al (2008) The gut does not contribute to systemic ammonia release in humans without portosystemic shunting. Am J Physiol Gastrointest Liver Physiol 295(4):G760–G765

    Article  CAS  PubMed  Google Scholar 

  12. Sugarbaker SP, Revhaug A, Wilmore DW (1987) The role of the small intestine in ammonia production after gastric blood administration. Ann Surg 206(1):5–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. De Preter V, Vanhoutte T, Huys G, Swings J, Rutgeerts P, Verbeke K (2006) Effect of lactulose and Saccharomyces boulardii administration on the colonic urea-nitrogen metabolism and the bifidobacteria concentration in healthy human subjects. Aliment Pharmacol Ther 23(7):963–974

    Article  CAS  PubMed  Google Scholar 

  14. Weiner ID, Verlander JW (2011) Role of NH3 and NH4+ transporters in renal acid-base transport. Am J Physiol Renal Physiol 300(1):F11–23

    Article  CAS  PubMed  Google Scholar 

  15. Phromphetcharat V, Jackson A, Dass PD, Welbourne TC (1981) Ammonia partitioning between glutamine and urea: Interorgan participation in metabolic acidosis. Kidney Int 20:598–605

    Article  CAS  PubMed  Google Scholar 

  16. Romero-Gómez M, Jover M, Galán JJ, Ruiz A (2009) Gut ammonia production and its modulation. Metab Brain Dis 24(1):147–157

    Article  CAS  PubMed  Google Scholar 

  17. Rohr F (2015) Nutrition management of urea cycle disorders. In: Bernstein L, Rohr F, Helm J (eds) Nutrition management of inherited metabolic diseases. Springer, Cham, Switzerland

    Google Scholar 

  18. Gropman AL, Summar M, Leonard JV (2007) Neurological implications of urea cycle disorders. J Inherit Metab Dis 30(6):865–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kinne-Saffran E, Kinne RK (1999) Vitalism and synthesis of urea. From Friedrich Wöhler to Hans A. Krebs. Am J Nephrol 19(2):290–294

    Article  CAS  PubMed  Google Scholar 

  20. Krebs HA (1973) The discovery of the ornithine cycle of urea synthesis. Biochem Educ 1(2):19–23

    Article  Google Scholar 

  21. Nickelsen K, Graßhoff G (2009) Concepts from the bench: Hans Krebs, Kurt Henseleit and the urea cycle. In: Hon G, Schickore J, Steinle F (eds) Going amiss in experimental research. Springer, Dordrecht, Netherlands

    Google Scholar 

  22. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. WH Freeman, New York

    Google Scholar 

  23. Long L-H, Zhang Y-T, Wang X-F, Cao Y-X (2009) Montmorillonite adsorbs urea and accelerates urea excretion from the intestine. Appl Clay Sci 46(1):57–62

    Article  CAS  Google Scholar 

  24. Thadhani R, Pascual M, Bonventre JV (1996) Acute renal failure. N Engl J Med 334:1448–1460

    Article  CAS  PubMed  Google Scholar 

  25. Weiner ID, Mitch WE, Sands JM (2015) Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin J Am Soc Nephrol 10(8):1444–1458

    Article  CAS  PubMed  Google Scholar 

  26. Murea M (2012) Advanced kidney failure and hyperuricemia. ACKD 19(6):419–424

    Google Scholar 

  27. Goodman MW, Zieve L, Konstantinides FN, Cerra FB (1984) Mechanism of arginine protection against ammonia intoxication in the rat. Am J Physiol Gastrointest Liver Physiol 247(3):G290–G295

    Article  CAS  Google Scholar 

  28. Brosnan ME, Brosnan JT (2007) Orotic acid excretion and arginine metabolism. J Nutr 137(6):1656S–1661S

    Article  CAS  PubMed  Google Scholar 

  29. Cheng W, Lu J, Li B, Lin W, Zhang Z, Wei X et al (2017) Effect of functional oligosaccharides and ordinary dietary fiber on intestinal microbiota diversity. Front Microbiol 8:1750

    Article  PubMed  PubMed Central  Google Scholar 

  30. Markowiak P, Śliżewska K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9(9):E1021

    Google Scholar 

  31. Hawkins RA, Jessy J, Mans AM, Chedid A, De Joseph MR (1994) Neomycin reduces the intestinal production of ammonia from glutamine. Adv Exp Med Biol 368:125–134

    Article  CAS  PubMed  Google Scholar 

  32. van Berlo CLH, van Leeuwen PAM, Soeters PB (1988) Porcine intestinal ammonia liberation: influence of food intake, lactulose and neomycin treatment. J Hepatol 7(2):250–257

    Article  PubMed  Google Scholar 

  33. Ascenzi P, Bocedi A, Visca P, Altruda F, Tolosano E, Beringhelli T, Fasano M (2005) Hemoglobin and heme scavenging. IUBMB Life 57(11):749–759

    Article  CAS  PubMed  Google Scholar 

  34. Quinn KD, Nguyen NQT, Wach MM, Wood TD (2012) Tandem mass spectrometry of bilin tetrapyrroles by electrospray ionization and collision induced dissociation. Rapid Commun Mass Spectrom 26(16):1767–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kotal P, Van Der Veere CN, Sinaasappel M, Elferink RO, Vítek L, Brodanová M et al (1997) Intestinal excretion of unconjugated bilirubin in man and rats with inherited unconjugated hyperbilirubinemia. Pediatr Res 42:195–200

    Article  CAS  PubMed  Google Scholar 

  36. Tiribelli C, Ostrow JD (2005) Intestinal flora and bilirubin. J Hepatol 42(2):170–172

    Article  PubMed  Google Scholar 

  37. Fargo MV, Grogan SP, Saguil A (2017) Evaluation of jaundice in adults. Am Fam Physician 95(3):164–168

    PubMed  Google Scholar 

  38. Daniel H, Gholami AM, Berry D, Desmarchelier C, Hahne H, Loh G et al (2014) High-fat diet alters gut microbiota physiology in mice. ISME J 8(2):295–308

    Article  CAS  PubMed  Google Scholar 

  39. Jeschke MG (2009) The hepatic response to thermal injury: is the liver important for postburn outcomes? Mol Med 15(9–10):337–351

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Nakamura T, Sato K, Akiba M, Ohnishi M (2006) Urobilinogen, as a bile pigment metabolite, has an antioxidant function. J Oleo Sci 55(4):191–197

    Article  CAS  Google Scholar 

  41. Kasper D, Fauci A, Hauser S, Longo D, Jameson J, Loscalzo J (eds) (2015) Harrison’s principles of internal medicine, 19th edn. McGraw Hill, New York, USA

    Google Scholar 

  42. Warrell DA, Cox TM, Firth JD (2010) The Oxford textbook of medicine, 5th edn. Oxford University Press, London, UK

    Book  Google Scholar 

  43. Sabaté M, Ibáñez L, Pérez E, Vidal X, Buti M, Xiol X et al (2011) Paracetamol in therapeutic dosages and acute liver injury: causality assessment in a prospective case series. BMC Gastroenterol 11:80

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mahadevan SBK, McKiernan PJ, Davies P, Kelly DA (2006) Paracetamol induced hepatotoxicity. Arch Dis Child 91(7):598–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ryder SD, Beckingham IJ (2001) Other causes of parenchymal liver disease. BMJ 322(7281):290–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Beckingham IJ, Ryder SD (2001) Investigation of liver and biliary disease. BMJ 322(7277):33–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Assy N, Jacob G, Spira G, Edoute Y (1999) Diagnostic approach to patients with cholestatic jaundice. World J Gastroenterol 5(3):252–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vitek L (2003) Intestinal metabolism of bilirubin in the pathogenesis of neonatal jaundice. J Paediatr 143(6):810

    Article  Google Scholar 

  49. Stokowski LA (2006) Fundamentals of phototherapy for neonatal jaundice. Adv Neonatal Care 6(6):303–312

    Article  PubMed  Google Scholar 

  50. Sadeghnia A, Ganji M, Armanian AM (2014) A comparison between the effect of fluorescent lamps and quartz halogen incandescent filament lamps on the treatment of hyperbilirobinemia in newborns with the gestational age of 35 weeks or more. Int J Prev Med 5(9):1186–1191

    PubMed  PubMed Central  Google Scholar 

  51. Berthelot P, Dhumeaux D (1978) New insights into the classification and mechanisms of hereditary, chronic, non-haemolytic hyperbilirubinaemias. Gut 19(6):474–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nambu M, Namihisa T (1996) Hepatic transport of serum bilirubin, bromsulfophthalein, and indocyanine green in patients with congenital non-hemolytic hyperbilirubinemia and patients with constitutional indocyanine green excretory defect. J Gastroenterol 31(2):228–236

    Article  CAS  PubMed  Google Scholar 

  53. Rollins DE, Klaassen CD (1979) Biliary excretion of drugs in man. Clin Pharmacokinet 4(5):368–379

    Article  CAS  PubMed  Google Scholar 

  54. Rozman K (1985) Intestinal excretion of toxic substances. Arch Toxicol Suppl 8:87–93

    Article  CAS  PubMed  Google Scholar 

  55. Jandacek RJ, Genuis SJ (2013) An assessment of the intestinal lumen as a site for intervention in reducing body burdens of organochlorine compounds. Sci World J 2013:205621

    Article  CAS  Google Scholar 

  56. Sharifi M, Ghafourian T (2014) Estimation of biliary excretion of foreign compounds using properties of molecular structure. AAPS J 16(1):65–78

    Article  CAS  PubMed  Google Scholar 

  57. Mikov M (1994) The metabolism of drugs by the gut flora. Eur J Drug Metab Pharmacokinet 19(3):201–207

    Article  CAS  PubMed  Google Scholar 

  58. Roberts MS, Magnusson BM, Burczynski FJ, Weiss M (2002) Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin Pharmacokinet 41(10):751–790

    Article  CAS  PubMed  Google Scholar 

  59. Barleben A, Mills S (2010) Anorectal anatomy and physiology. Surg Clin North Am 90(1):1–15

    Article  PubMed  Google Scholar 

  60. Yu SW, Rao SS (2014) Anorectal physiology and pathophysiology in the elderly. Clin Geriatr Med 30(1):95–106

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ikard RW (2015) Spiral rectal valves: anatomy, eponyms, and clinical significance. Clin Anat 28(4):436–441

    Article  PubMed  Google Scholar 

  62. Jorge JM, Wexner SD (1997) Anatomy and physiology of the rectum and anus. Eur J Surg 163(10):723–731

    PubMed  CAS  Google Scholar 

  63. Irving MH, Catchpole B (1992) ABC of colorectal diseases. Anatomy and physiology of the colon, rectum, and anus. BMJ 304(6834):1106–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Raizada V, Mittal RK (2008) Pelvic floor anatomy and applied physiology. Gastroenterol Clin North Am 37(3):493–vii

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kim AY (2011) How to interpret a functional or motility test—defecography. J Neurogastroenterol Motil 17(4):416–420

    Article  PubMed  PubMed Central  Google Scholar 

  66. Penninckx F, Debruyne C, Lestar B, Kerremans R (1991) Intraobserver variation in the radiological measurement of the anorectal angle. Gastrointest Radiol 16(1):73–76

    Article  CAS  PubMed  Google Scholar 

  67. Piloni V, Fioravanti P, Spazzafumo L, Rossi B (1999) Measurement of the anorectal angle by defecography for the diagnosis of fecal incontinence. Int J Colorectal Dis 14(2):131–135

    Article  CAS  PubMed  Google Scholar 

  68. Ridolfi TJ, Tong W-D, Takahashi T, Kosinski L, Ludwig KA (2009) Sympathetic and parasympathetic regulation of rectal motility in rats. J Gastrointest Surg 13(11):2027–2033

    Article  PubMed  Google Scholar 

  69. Shafik A, El-Sibai O, Ahmed I (2002) Parasympathetic extrinsic reflex: role in defecation mechanism. World J Surg 26(6):737–741

    Article  PubMed  Google Scholar 

  70. Mauroy B, Demondion X, Bizet B, Claret A, Mestdagh P, Hurt C (2007) The female inferior hypogastric (=pelvic) plexus: anatomical and radiological description of the plexus and its afferences—applications to pelvic surgery. Surg Radiol Anat 29(1):55–66

    Article  CAS  PubMed  Google Scholar 

  71. Gallachera K, Santosa LC, Campoy L, Bezuidenhout AJ, Gilbert RO (2016) Development of a peripheral nerve stimulator-guided technique for equine pudendal nerve blockade. Vet J 217:72–77

    Article  Google Scholar 

  72. Origoni M, Maggiore ULR, Salvatore S, Candiani M (2014) Neurobiological mechanisms of pelvic pain. Biomed Res Int 2014:903848

    Article  PubMed  PubMed Central  Google Scholar 

  73. Vermeulen W, De Man JG, Pelckmans PA, De Winter BY (2014) Neuroanatomy of lower gastrointestinal pain disorders. World J Gastroenterol 20(4):1005–1020

    Article  PubMed  PubMed Central  Google Scholar 

  74. Palit S, Lunniss PJ, Scott SM (2012) The physiology of human defecation. Dig Dis Sci 57(6):1445–1464

    Article  PubMed  Google Scholar 

  75. Katsui R, Kuniyasu H, Matsuyoshi H, Fujii H, Nakajima Y, Takaki M (2009) The plasticity of the defecation reflex pathway in the enteric nervous system of guinea pigs. J Smooth Muscle Res 45(1):1–13

    Article  PubMed  Google Scholar 

  76. Bajwa A, Emmanuel A (2009) The physiology of continence and evacuation. Best Pract Res Clin Gastroenterol 23(4):477–485

    Article  PubMed  Google Scholar 

  77. Winge K, Rasmussen D, Werdelin LM (2003) Constipation in neurological diseases. J Neurol Neurosurg Psychiatry 74:13–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Krier J (1989) Motor function of anorectum and pelvic floor musculature. In: Wood JD (ed) Handbook of physiology. The gastrointestinal system: motility and circulation. American Physiological Society, Bethesda, Maryland, United States

    Google Scholar 

  79. Bajwa A, Emmanuel A (2009) The physiology of continence and evacuation. Best Pract Res Clin Gastroenterol 23(4):477–485

    Article  PubMed  Google Scholar 

  80. Petros P, Swash M, Bush M, Fernandez M, Gunnemann A, Zimmer M (2012) Defecation 1: testing a hypothesis for pelvic striated muscle action to open the anorectum. Tech Coloproctol 16(6):437–443

    Article  CAS  PubMed  Google Scholar 

  81. Shafik A, Shafik IA, El Sibai O, Shafik AA (2006) The “opening time” and “pelvic floor electromyographic lag time”: two novel tools in the assessment of the anorectal evacuation time. J Invest Surg 19(5):307–311

    Article  PubMed  Google Scholar 

  82. Remes-Troche JM, De-Ocampo S, Valestin J, Rao SS (2010) Rectoanal reflexes and sensorimotor response in rectal hyposensitivity. Dis Colon Rectum 53(7):1047–1054

    Article  PubMed  PubMed Central  Google Scholar 

  83. De Ocampo S, Remes-Troche JM, Miller MJ, Rao SS (2007) Rectoanal sensorimotor response in humans during rectal distension. Dis Colon Rectum 50(10):1639–1646

    Article  PubMed  Google Scholar 

  84. Bush M, Petros P, Swash M, Fernandez M, Gunnemann A (2012) Defecation 2: internal anorectal resistance is a critical factor in defecatory disorders. Tech Coloproctol 16(6):445–450

    Article  CAS  PubMed  Google Scholar 

  85. Fletcher JG, Busse RF, Riederer SJ, Hough D, Gluecker T, Harper CM, Bharucha AE (2003) Magnetic resonance imaging of anatomic and dynamic defects of the pelvic floor in defecatory disorders. Am J Gastroenterol 98(2):399–411

    Article  CAS  PubMed  Google Scholar 

  86. Wald A (1994) Colonic and anorectal motility testing in clinical practice. Am J Gastroenterol 89(12):2109–2115

    PubMed  CAS  Google Scholar 

  87. Yabunaka K, Nakagami G, Komagata K, Sanada H (2017) Ultrasonographic follow-up of functional chronic constipation in adults: a report of two cases. SAGE Open Med Case Rep 5:2050313X17694234

    Article  Google Scholar 

  88. Ko CY, Tong J, Lehman RE, Shelton AA, Schrock TR, Welton ML (1997) Biofeedback is effective therapy for fecal incontinence and constipation. Arch Surg 132:829–834

    Article  CAS  PubMed  Google Scholar 

  89. Whitehead WE (1996) Functional anorectal disorders. Semin Gastrointest Dis 7(4):230–236

    PubMed  CAS  Google Scholar 

  90. Bharucha AE, Wald A, Enck P, Rao S (2006) Functional anorectal disorders. Gastroenterology 130(5):1510–1518

    Article  PubMed  Google Scholar 

  91. Shafik A (1982) A new concept of the anatomy of the anal sphincter mechanism and the physiology of defecation. XV. Chronic anal fissure: a new theory of pathogenesis. Am J Surg 144(2):262–268

    Article  CAS  PubMed  Google Scholar 

  92. Chokhavatia S, John ES, Bridgeman MB, Dixit D (2016) Constipation in elderly patients with noncancer pain: focus on opioid-induced constipation. Drugs Aging 33(8):557–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Miner PB Jr (2018) Efficacy and safety of plecanatide in treating constipation predominant irritable bowel syndrome. Expert Opin Pharmacother 19(2):177–183

    Article  CAS  PubMed  Google Scholar 

  94. Shah ED, Kim HM, Schoenfeld P (2018) Efficacy and tolerability of guanylate cyclase-C agonists for irritable bowel syndrome with constipation and chronic idiopathic constipation: a systematic review and meta-analysis. Am J Gastroenterol 113(3):329–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kinugasa Y, Arakawa T, Murakami G, Fujimiya M, Sugihara K (2014) Nerve supply to the internal anal sphincter differs from that to the distal rectum: an immunohistochemical study of cadavers. Int J Colorectal Dis 29(4):429–436

    Article  PubMed  Google Scholar 

  96. Holschneider AM, Kunst M (2008) Anal sphincter achalasia and ultrashort hirschsprung’s disease. In: Holschneider A, Puri P (eds) Hirschsprung’s disease and allied disorders. Springer, Heidelberg

    Chapter  Google Scholar 

  97. Chumpitazi BP, Fishman SJ, Nurko S (2009) Long-term clinical outcome after botulinum toxin injection in children with nonrelaxing internal anal sphincter children with nonrelaxing internal anal sphincter. Am J Gastroenterol 104:976–983

    Article  CAS  PubMed  Google Scholar 

  98. De Caluwé D, Yoneda A, Akl U, Puri P (2001) Internal anal sphincter achalasia: outcome after internal sphincter myectomy. J Pediatr Surg 36:736–738

    Article  PubMed  Google Scholar 

  99. Koivusalo AI, Pakarinen MP, Rintala RJ (2009) Botox injection treatment for anal outlet obstruction in patients with internal anal sphincter achalasia and Hirschsprung’s disease. Pediatr Surg Int 25(10):873–876

    Article  CAS  PubMed  Google Scholar 

  100. Doodnath R, Puri P (2009) Internal anal sphincter achalasia. Semin Pediatr Surg 18(4):246–248

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menizibeya Osain Welcome MD, PhD .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Welcome, M.O. (2018). Excretory Functions of the Gastrointestinal Tract. Defecation. In: Gastrointestinal Physiology. Springer, Cham. https://doi.org/10.1007/978-3-319-91056-7_13

Download citation

Publish with us

Policies and ethics