Skip to main content

Visualization in Robotic Surgery

  • Chapter
  • First Online:
The SAGES Atlas of Robotic Surgery

Abstract

Visualization can be defined as “a technique for creating images, diagrams, or animations to communicate a message” [1]. Visualization in surgical robotics involves displaying images of patient anatomy to the surgeon. Such images can be provided by optical or tomographic imaging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Visualization (graphics). Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Visualization_(graphics)&oldid=739661476. Accessed 16 Sept 2016.

  2. Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35:153–60.

    Article  CAS  PubMed  Google Scholar 

  3. RAMS: Robot assisted microsurgery. NASA JPL, NASA Office of Aeronautics and Space Technology (Code R); Project completed 1997.

    Google Scholar 

  4. Saraf S. Robotic assisted microsurgery (RAMS): application in plastic surgery. In: Bozovic V, editor. Medical robotics. Rijeka: InTech; 2008. ISBN: 978-3-902613-18-9.

    Google Scholar 

  5. Takahashi S, Uehara M, Kato S, Kidawara A, Saito K, Goto M, et al., Inventors; Olympus Optical, assignee. Stereoscopic endoscope. US Patent 5 588 948, 24 Feb 1998.

    Google Scholar 

  6. Hopf NJ, Kurucz P, Reisch R. Three-dimensional HD endoscopy—first experiences with the Einstein Vision system in neurosurgery. Innovative Neurosurg. 2013;1:125–31.

    Google Scholar 

  7. Banks MS, Read JC, Allison RS, Watt SJ. Stereoscopy and the human visual system. SMPTE Motion Imaging J. 2012;121:24–43.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Spinoglio G, Priora F, Bianchi PP, Lucido FS, Licciardello A, Maglione V, et al. Real-time near-infrared fluorescent cholangiography in single-site robotic cholecystectomy: a single-institutional prospective study. Surg Endosc. 2013;27:2156–62.

    Article  PubMed  Google Scholar 

  9. Rossi EC, Ivanova A, Boggess JF. Robotically assisted fluorescence-guided lymph node mapping with ICG for gynecologic malignancies: a feasibility study. Gynecol Oncol. 2012;124:78–82.

    Article  PubMed  Google Scholar 

  10. Sorger J. Clinical milestones in optical imaging. In: Fong Y, Giulianotti PC, Lewis J, Koerkamp BG, Reiner T, editors. Imaging and visualization in the modern operating room: a comprehensive guide for physicians. New York: Springer; 2015. p. 133–43.

    Chapter  Google Scholar 

  11. Rosenthal EL, Warram JM, de Boer E, Chung TK, Korb ML, Brandwein-Gensler M, et al. Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res. 2015;21:3658–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Vicini C, Montevecchi F, D'Agostino G, De Vito A, Meccariello G. A novel approach emphasising intra-operative superficial margin enhancement of head-neck tumours with narrow-band imaging in transoral robotic surgery. Acta Otorhinolaryngol Ital. 2015;35:157–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zheng C, Lu Y, Zhong Q, Wang R, Jiang Q. Narrow band imaging diagnosis of bladder cancer: systematic review and meta-analysis. BJU Int. 2012;110:E680–7.

    Article  PubMed  Google Scholar 

  14. Tateya I, Ishikawa S, Morita S, Ito H, Sakamoto T, Murayama T, et al. Magnifying endoscopy with narrow band imaging to determine the extent of resection in transoral robotic surgery of oropharyngeal cancer. Case Rep Otolaryngol. 2014;2014:604737.

    PubMed  PubMed Central  Google Scholar 

  15. Hughes M, Yang GZ. High speed, line-scanning, fiber bundle fluorescence confocal endomicroscopy for improved mosaicking. Biomed Opt Express. 2015;6:1241–52.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Clancy NT, Arya S, Qi J, Stoyanov D, Hanna GB, Elson DS. Polarised stereo endoscope and narrowband detection for minimal access surgery. Biomed Opt Express. 2014;5:4108–17.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Hellan M, Spinoglio G, Pigazzi A, Lagares-Garcia JA. The influence of fluorescence imaging on the location of bowel transection during robotic left-sided colorectal surgery. Surg Endosc. 2014;28:1695–702.

    Article  PubMed  Google Scholar 

  18. Herrell SD, Kwartowitz DM, Milhoua PM, Galloway RL. Toward image guided robotic surgery: system validation. J Urol. 2009;181:783–9. discussion 789–90

    Article  PubMed  Google Scholar 

  19. Nakamura N, Sugano N, Nishii T, Miki H, Kakimoto A, Yamamura M. Robot-assisted primary cementless total hip arthroplasty using surface registration techniques: a short-term clinical report. Int J Comput Assist Radiol Surg. 2009;4:157–62.

    Article  PubMed  Google Scholar 

  20. Mountney P, Fallert J, Nicolau S, Soler L, Mewes PW. An augmented reality framework for soft tissue surgery. Med Image Comput Comput Assist Interv. 2014;17:423–31.

    PubMed  Google Scholar 

  21. Hu X, Scharschmidt TJ, Ohnmeiss DD, Lieberman IH. Robotic assisted surgeries for the treatment of spine tumors. Int J Spine Surg. 2015;9. https://doi.org/10.14444/2001.

    Article  CAS  PubMed Central  Google Scholar 

  22. Visible patient. https://www.visiblepatient.com/en/service. Accessed 11 Oct 2015.

  23. Velayutham V, Fuks D, Nomi T, Kawaguchi Y, Gayet B. 3D visualization reduces operating time when compared to high-definition 2D in laparoscopic liver resection: a case-matched study. Surg Endosc. 2016;30(1):147–53.

    Article  PubMed  Google Scholar 

  24. Hughes-Hallett A, Pratt P, Mayer E, Clark M, Vale J, Darzi A. Using preoperative imaging for intraoperative guidance: a case of mistaken identity. Int J Med Robot. 2016;12(2):262–7.

    Article  PubMed  Google Scholar 

  25. Peters T, Cleary K, editors. Image-guided interventions: technology and applications. New York: Springer; 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Azizian PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azizian, M., McDowall, I., Sorger, J. (2018). Visualization in Robotic Surgery. In: Fong, Y., Woo, Y., Hyung, W., Lau, C., Strong, V. (eds) The SAGES Atlas of Robotic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-91045-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91045-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91043-7

  • Online ISBN: 978-3-319-91045-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics