Skip to main content

Harmonic Balance Method and Stability of Discontinuous Systems

  • Chapter
  • First Online:
Dynamics and Control of Advanced Structures and Machines

Abstract

The development of the theory of discontinuous dynamical systems and differential inclusions was not only due to research in the field of abstract mathematics but also a result of studies of particular problems in mechanics. One of the first methods, used for the analysis of dynamics in discontinuous mechanical systems, was the harmonic balance method developed in the thirties of the twentieth century. In our work, the results of analysis obtained by the method of harmonic balance, which is an approximate method, are compared with the results obtained by rigorous mathematical methods and numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The history of the dry friction law can be found, e.g., in [14].

References

  1. Hartog, J.D.: Lond. Edinb. Dubl. Philos. Mag. J. Sci. 9(59), 801 (1930)

    Google Scholar 

  2. Andronov, N., Bautin, A.A.: Dokl. Akad. Nauk SSSR (in Russian) 43(5), 197 (1944)

    Google Scholar 

  3. Keldysh, M.: TsAGI Tr. (in Russian) 557, 26 (1944)

    Google Scholar 

  4. Krylov, N., Bogolyubov, N.: Introduction to Non-linear Mechanics (in Russian). AN USSR, Kiev (1937) (English transl: Princeton Univ. Press, 1947)

    Google Scholar 

  5. Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer, Dordrecht (1988)

    Google Scholar 

  6. Gelig, A., Leonov, G., Yakubovich, V.: Stability of Nonlinear Systems with Nonunique Equilibrium (in Russian). Nauka, Moscow (1978) (English transl: Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities, 2004, World Scientific)

    Google Scholar 

  7. Orlov, Y.: Discontinuous Systems: Lyapunov Analysis and Robust Synthesis Under Uncertainty Conditions. Communications and Control Engineering. Springer, New York (2008)

    Google Scholar 

  8. Boiko, I.: Discontinuous Control Systems: Frequency-Domain Analysis and Design. Springer, London (2008)

    Google Scholar 

  9. Adly, S.: A Variational Approach to Nonsmooth Dynamics: Applications in Unilateral Mechanics and Electronics. SpringerBriefs in Mathematics. Springer International Publishing, Cham (2018)

    Google Scholar 

  10. Leonov, G., Ponomarenko, D., Smirnova, V.: Frequency-Domain Methods for Nonlinear Analysis. Theory and Applications. World Scientific, Singapore (1996)

    Google Scholar 

  11. Aizerman, M., Pyatnitskiy, E.: Autom. Remote Control (in Russian) 7 8, 33 (1974)

    Google Scholar 

  12. Dontchev, A., Lempio, F.: SIAM Rev. 34(2), 263 (1992)

    Google Scholar 

  13. Piiroinen, P.T., Kuznetsov, Y.A.: ACM Trans. Math. Softw. 34(3), 13 (2008)

    Google Scholar 

  14. Zhuravlev, V.: Herald of the Bauman Moscow State Technical University. Series Natural Sciences (2(53)), 21 (2014)

    Google Scholar 

  15. Leonov, G.A., Kuznetsov, N.V.: On flutter suppression in the Keldysh model. Dokl. Phys. 63(9), 366–370 (2018). https://doi.org/10.1134/S1028335818090021

    Google Scholar 

  16. Leonov, G., Kuznetsov, N.: Int. J. Bifurcation Chaos 23(1) (2013) art. no. 1330002. https://doi.org/10.1142/S0218127413300024

  17. Leonov, G., Kuznetsov, N., Mokaev, T.: Eur. Phys. J. Spec. Top. 224(8), 1421 (2015). https://doi.org/10.1140/epjst/e2015-02470-3

    Google Scholar 

  18. Kuznetsov, N.: Lect. Notes Electr. Eng. 371, 13 (2016). https://doi.org/10.1007/978-3-319-27247-4_2. Plenary lecture at International Conference on Advanced Engineering Theory and Applications 2015

  19. Kiseleva, M., Kudryashova, E., Kuznetsov, N., Kuznetsova, O., Leonov, G., Yuldashev, M., Yuldashev, R.: Int. J. Parall. Emerg. Distrib. Syst. (2018). https://doi.org/10.1080/17445760.2017.1334776

  20. Stankevich, N., Kuznetsov, N., Leonov, G., Chua, L.: Int. J. Bifurcation Chaos 27(12) (2017). Art. num. 1730038

    Google Scholar 

  21. Chen, G., Kuznetsov, N., Leonov, G., Mokaev, T.: Int. J. Bifurcation Chaos 27(8) (2017). Art. num. 1750115

    Google Scholar 

  22. Kuznetsov, N., Leonov, G., Mokaev, T., Prasad, A., Shrimali, M.: Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4054-z

  23. Danca, M.F., Fečkan, M., Kuznetsov, N., Chen, G.: Nonlinear Dyn. 91(4), 2523 (2018)

    Google Scholar 

  24. Pliss, V.A.: Some Problems in the Theory of the Stability of Motion (in Russian). Izd LGU, Leningrad (1958)

    Google Scholar 

  25. Fitts, R.E.: Trans. IEEE AC-11(3), 553 (1966)

    Google Scholar 

  26. Barabanov, N.E.: Sib. Math. J. 29(3), 333 (1988)

    Google Scholar 

  27. Bernat, J., Llibre, J.: Dyn. Contin. Discrete Impuls. Syst. 2(3), 337 (1996)

    Google Scholar 

  28. Leonov, G., Bragin, V., Kuznetsov, N.: Dokl. Math. 82(1), 540 (2010). https://doi.org/10.1134/S1064562410040101

    Google Scholar 

  29. Bragin, V., Vagaitsev, V., Kuznetsov, N., Leonov, G.: J. Comput. Syst. Sci. Int. 50(4), 511 (2011). https://doi.org/10.1134/S106423071104006X

    Google Scholar 

  30. Leonov, G., Kuznetsov, N.: Dokl. Math. 84(1), 475 (2011). https://doi.org/10.1134/S1064562411040120

    Google Scholar 

  31. Alli-Oke, R., Carrasco, J., Heath, W., Lanzon, A.: IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 7, p. 27 (2012). https://doi.org/10.3182/20120620-3-DK-2025.00161

  32. Heath, W.P., Carrasco, J., de la Sen, M.: Automatica 60, 140 (2015)

    Google Scholar 

  33. Leonov, G., Kuznetsov, N., Kiseleva, M., Mokaev, R.: Differ. Equ. 53(13), 1671 (2017)

    Google Scholar 

  34. Leonov, G., Mokaev, R.: Dokl. Math. 96(1), 1 (2017). https://doi.org/10.1134/S1064562417040111

    Google Scholar 

Download references

Acknowledgement

This work was supported by the grant NSh-2858.2018.1 of the President of Russian Federation for the Leading Scientific Schools of Russia (2018–2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kuznetsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kudryashova, E.V., Kuznetsov, N.V., Kuznetsova, O.A., Leonov, G.A., Mokaev, R.N. (2019). Harmonic Balance Method and Stability of Discontinuous Systems. In: Matveenko, V., Krommer, M., Belyaev, A., Irschik, H. (eds) Dynamics and Control of Advanced Structures and Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-90884-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90884-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90883-0

  • Online ISBN: 978-3-319-90884-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics