Skip to main content

Current and Future Perspectives on Sperm RNAs

  • Chapter
  • First Online:
Book cover Emerging Topics in Reproduction

Abstract

The presence of RNA in sperm was originally thought to be a controversial topic as transcription was absent in the mature mammalian sperm. With the recent development of RNA-seq and advanced molecular techniques, an unexpectedly rich and complex repertoire of RNAs has been identified in the mature sperm. Although a vast majority of RNAs packed in sperm are known to be remnants of spermatogenic process, some studies using animal model have proved that some RNAs are deliberately packed in sperm. Recent evidence suggests that some sperm RNAs are linked to transgenerational inheritance of paternal traits, in a non-Mendelian fashion, and some RNAs may have potential roles during early embryonic development. In this chapter, we summarize the different types of RNAs identified in sperm and their functional significance, clinical potential, and role in transgenerational inheritance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braun RE. Packaging paternal chromosomes with protamine. Nat Genet. 2001;28(1):10–2. https://doi.org/10.1038/88194.

    Article  PubMed  CAS  Google Scholar 

  2. Johnson GD, Sendler E, Lalancette C, Hauser R, Diamond MP, Krawetz SA. Cleavage of rRNA ensures translational cessation in sperm at fertilization. Mol Hum Reprod. 2011;17(12):721–6. https://doi.org/10.1093/molehr/gar054.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kierszenbaum AL, Tres LL. Structural and transcriptional features of the mouse spermatid genome. J Cell Biol. 1975;65(2):258–70.

    Article  CAS  PubMed  Google Scholar 

  4. Pessot CA, Brito M, Figueroa J, Concha II, Yanez A, Burzio LO. Presence of RNA in the sperm nucleus. Biochem Biophys Res Commun. 1989;158(1):272–8.

    Article  CAS  PubMed  Google Scholar 

  5. Sendler E, Johnson GD, Mao S, Goodrich RJ, Diamond MP, Hauser R, Krawetz SA. Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res. 2013;41(7):4104–17. https://doi.org/10.1093/nar/gkt132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cooper TG. Cytoplasmic droplets: the good, the bad or just confusing? Hum Reprod. 2005;20(1):9–11. https://doi.org/10.1093/humrep/deh555.

    Article  PubMed  CAS  Google Scholar 

  7. Betlach CJ, Erickson RP. A unique RNA species from maturing mouse spermatozoa. Nature. 1973;242(5393):114–5.

    Article  CAS  PubMed  Google Scholar 

  8. Rejon E, Bajon C, Blaize A, Robert D. RNA in the nucleus of a motile plant spermatozoid: characterization by enzyme-gold cytochemistry and in situ hybridization. Mol Reprod Dev. 1988;1(1):49–56. https://doi.org/10.1002/mrd.1080010108.

    Article  PubMed  CAS  Google Scholar 

  9. Ostermeier GC, Dix DJ, Miller D, Khatri P, Krawetz SA. Spermatozoal RNA profiles of normal fertile men. Lancet. 2002;360(9335):772–7. https://doi.org/10.1016/S0140-6736(02)09899-9.

    Article  PubMed  CAS  Google Scholar 

  10. Ostermeier GC, Goodrich RJ, Moldenhauer JS, Diamond MP, Krawetz SA. A suite of novel human spermatozoal RNAs. J Androl. 2005;26(1):70–4.

    PubMed  CAS  Google Scholar 

  11. Ostermeier GC, Miller D, Huntriss JD, Diamond MP, Krawetz SA. Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature. 2004;429(6988):154. https://doi.org/10.1038/429154a.

    Article  PubMed  CAS  Google Scholar 

  12. Ziyyat A, Lefevre A. Differential gene expression in pre-implantation embryos from mouse oocytes injected with round spermatids or spermatozoa. Hum Reprod. 2001;16(7):1449–56.

    Article  CAS  PubMed  Google Scholar 

  13. Aoki F, Worrad DM, Schultz RM. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol. 1997;181(2):296–307. https://doi.org/10.1006/dbio.1996.8466.

    Article  PubMed  CAS  Google Scholar 

  14. Ostermeier GC, Dix DJ, Krawetz SA. A bioinformatic strategy to rapidly characterize cDNA libraries. Bioinformatics. 2002;18(7):949–52.

    Article  CAS  PubMed  Google Scholar 

  15. Herrero M, Thornton PK, Notenbaert AM, Wood S, Msangi S, Freeman HA, Bossio D, Dixon J, Peters M, van de Steeg J, Lynam J, Parthasarathy Rao P, Macmillan S, Gerard B, McDermott J, Sere C, Rosegrant M. Smart investments in sustainable food production: revisiting mixed crop-livestock systems. Science. 2010;327(5967):822–5. https://doi.org/10.1126/science.1183725.

    Article  PubMed  CAS  Google Scholar 

  16. Chaplin-Kramer R, Dombeck E, Gerber J, Knuth KA, Mueller ND, Mueller M, Ziv G, Klein AM. Global malnutrition overlaps with pollinator-dependent micronutrient production. Proc Biol Sci. 2014;281(1794):20141799. https://doi.org/10.1098/rspb.2014.1799.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. Food security: the challenge of feeding 9 billion people. Science. 2010;327(5967):812–8. https://doi.org/10.1126/science.1185383.

    Article  PubMed  CAS  Google Scholar 

  18. Miller D, Briggs D, Snowden H, Hamlington J, Rollinson S, Lilford R, Krawetz SA. A complex population of RNAs exists in human ejaculate spermatozoa: implications for understanding molecular aspects of spermiogenesis. Gene. 1999;237(2):385–92.

    Article  CAS  PubMed  Google Scholar 

  19. Lambard S, Galeraud-Denis I, Martin G, Levy R, Chocat A, Carreau S. Analysis and significance of mRNA in human ejaculated sperm from normozoospermic donors: relationship to sperm motility and capacitation. Mol Hum Reprod. 2004;10(7):535–41. https://doi.org/10.1093/molehr/gah064.

    Article  PubMed  CAS  Google Scholar 

  20. Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S, Diamond MP. A survey of small RNAs in human sperm. Hum Reprod. 2011;26(12):3401–12. https://doi.org/10.1093/humrep/der329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Jodar M, Selvaraju S, Sendler E, Diamond MP, Krawetz SA, Reproductive Medicine Network. The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update. 2013;19(6):604–24. https://doi.org/10.1093/humupd/dmt031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Goodrich RJ, Anton E, Krawetz SA. Isolating mRNA and small noncoding RNAs from human sperm. Methods Mol Biol. 2013;927:385–96. https://doi.org/10.1007/978-1-62703-038-0_33.

    Article  PubMed  CAS  Google Scholar 

  23. Vassena R, Boue S, Gonzalez-Roca E, Aran B, Auer H, Veiga A, Izpisua Belmonte JC. Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development. Development. 2011;138(17):3699–709. https://doi.org/10.1242/dev.064741.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hata T, Nakayama M. Targeted disruption of the murine large nuclear KIAA1440/Ints1 protein causes growth arrest in early blastocyst stage embryos and eventual apoptotic cell death. Biochim Biophys Acta. 2007;1773(7):1039–51. https://doi.org/10.1016/j.bbamcr.2007.04.010.

    Article  PubMed  CAS  Google Scholar 

  25. Fischer BE, Wasbrough E, Meadows LA, Randlet O, Dorus S, Karr TL, Russell S. Conserved properties of Drosophila and human spermatozoal mRNA repertoires. Proc Biol Sci. 2012;279(1738):2636–44. https://doi.org/10.1098/rspb.2012.0153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bourc’his D, Voinnet O. A small-RNA perspective on gametogenesis, fertilization, and early zygotic development. Science. 2010;330(6004):617–22. https://doi.org/10.1126/science.1194776.

    Article  PubMed  CAS  Google Scholar 

  27. Dadoune JP. Spermatozoal RNAs: what about their functions? Microsc Res Tech. 2009;72(8):536–51. https://doi.org/10.1002/jemt.20697.

    Article  PubMed  CAS  Google Scholar 

  28. Liu WM, Pang RT, Chiu PC, Wong BP, Lao K, Lee KF, Yeung WS. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci U S A. 2012;109(2):490–4. https://doi.org/10.1073/pnas.1110368109.

    Article  PubMed  Google Scholar 

  29. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8. https://doi.org/10.1038/nature08162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Carrell DT, Hammoud SS. The human sperm epigenome and its potential role in embryonic development. Mol Hum Reprod. 2010;16(1):37–47. https://doi.org/10.1093/molehr/gap090.

    Article  PubMed  CAS  Google Scholar 

  31. Hosken DJ, Hodgson DJ. Why do sperm carry RNA? Relatedness, conflict, and control. Trends Ecol Evol. 2014;29(8):451–5. https://doi.org/10.1016/j.tree.2014.05.006.

    Article  PubMed  Google Scholar 

  32. Abu-Halima M, Backes C, Leidinger P, Keller A, Lubbad AM, Hammadeh M, Meese E. MicroRNA expression profiles in human testicular tissues of infertile men with different histopathologic patterns. Fertil Steril. 2014;101(1):78–86. e72. https://doi.org/10.1016/j.fertnstert.2013.09.009.

    Article  PubMed  CAS  Google Scholar 

  33. McIver SC, Roman SD, Nixon B, McLaughlin EA. miRNA and mammalian male germ cells. Hum Reprod Update. 2012;18(1):44–59. https://doi.org/10.1093/humupd/dmr041.

    Article  PubMed  CAS  Google Scholar 

  34. Salas-Huetos A, Blanco J, Vidal F, Mercader JM, Garrido N, Anton E. New insights into the expression profile and function of micro-ribonucleic acid in human spermatozoa. Fertil Steril. 2014;102(1):213–22. e214. https://doi.org/10.1016/j.fertnstert.2014.03.040.

    Article  PubMed  CAS  Google Scholar 

  35. Hammoud SS, Low DH, Yi C, Carrell DT, Guccione E, Cairns BR. Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. Cell Stem Cell. 2014;15(2):239–53. https://doi.org/10.1016/j.stem.2014.04.006.

    Article  PubMed  CAS  Google Scholar 

  36. Cui L, Fang L, Shi B, Qiu S, Ye Y. Spermatozoa micro ribonucleic acid-34c level is correlated with intracytoplasmic sperm injection outcomes. Fertil Steril. 2015;104(2):312–7. e311. https://doi.org/10.1016/j.fertnstert.2015.05.003.

    Article  PubMed  CAS  Google Scholar 

  37. Bouhallier F, Allioli N, Lavial F, Chalmel F, Perrard MH, Durand P, Samarut J, Pain B, Rouault JP. Role of miR-34c microRNA in the late steps of spermatogenesis. RNA. 2010;16(4):720–31. https://doi.org/10.1261/rna.1963810.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Tang F, Kaneda M, O'Carroll D, Hajkova P, Barton SC, Sun YA, Lee C, Tarakhovsky A, Lao K, Surani MA. Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 2007;21(6):644–8. https://doi.org/10.1101/gad.418707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zheng K, Wang PJ. Blockade of pachytene piRNA biogenesis reveals a novel requirement for maintaining post-meiotic germline genome integrity. PLoS Genet. 2012;8(11):e1003038. https://doi.org/10.1371/journal.pgen.1003038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. O'Donnell KA, Boeke JD. Mighty Piwis defend the germline against genome intruders. Cell. 2007;129(1):37–44. https://doi.org/10.1016/j.cell.2007.03.028.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Steger K, Klonisch T, Gavenis K, Drabent B, Doenecke D, Bergmann M. Expression of mRNA and protein of nucleoproteins during human spermiogenesis. Mol Hum Reprod. 1998;4(10):939–45.

    Article  CAS  PubMed  Google Scholar 

  42. Aoki VW, Emery BR, Liu L, Carrell DT. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl. 2006;27(6):890–8. https://doi.org/10.2164/jandrol.106.000703.

    Article  PubMed  CAS  Google Scholar 

  43. Steger K, Wilhelm J, Konrad L, Stalf T, Greb R, Diemer T, Kliesch S, Bergmann M, Weidner W. Both protamine-1 to protamine-2 mRNA ratio and Bcl2 mRNA content in testicular spermatids and ejaculated spermatozoa discriminate between fertile and infertile men. Hum Reprod. 2008;23(1):11–6. https://doi.org/10.1093/humrep/dem363.

    Article  PubMed  CAS  Google Scholar 

  44. Kempisty B, Depa-Martynow M, Lianeri M, Jedrzejczak P, Darul-Wasowicz A, Jagodzinski PP. Evaluation of protamines 1 and 2 transcript contents in spermatozoa from asthenozoospermic men. Folia Histochem Cytobiol. 2007;45(Suppl 1):S109–13.

    PubMed  Google Scholar 

  45. Lima-Souza A, Anton E, Mao S, Ho WJ, Krawetz SA. A platform for evaluating sperm RNA biomarkers: dysplasia of the fibrous sheath--testing the concept. Fertil Steril. 2012;97(5):1061–6. e1061–1063. https://doi.org/10.1016/j.fertnstert.2012.02.013.

    Article  PubMed  CAS  Google Scholar 

  46. Bonache S, Mata A, Ramos MD, Bassas L, Larriba S. Sperm gene expression profile is related to pregnancy rate after insemination and is predictive of low fecundity in normozoospermic men. Hum Reprod. 2012;27(6):1556–67. https://doi.org/10.1093/humrep/des074.

    Article  PubMed  CAS  Google Scholar 

  47. Depa-Martynow M, Kempisty B, Lianeri M, Jagodzinski PP, Jedrzejczak P. Association between fertilin beta, protamines 1 and 2 and spermatid-specific linker histone H1-like protein mRNA levels, fertilization ability of human spermatozoa, and quality of preimplantation embryos. Folia Histochem Cytobiol. 2007;45(Suppl 1):S79–85.

    PubMed  Google Scholar 

  48. Garcia-Herrero S, Meseguer M, Martinez-Conejero JA, Remohi J, Pellicer A, Garrido N. The transcriptome of spermatozoa used in homologous intrauterine insemination varies considerably between samples that achieve pregnancy and those that do not. Fertil Steril. 2010;94(4):1360–73. https://doi.org/10.1016/j.fertnstert.2009.07.1671.

    Article  PubMed  CAS  Google Scholar 

  49. Garcia-Herrero S, Garrido N, Martinez-Conejero JA, Remohi J, Pellicer A, Meseguer M. Differential transcriptomic profile in spermatozoa achieving pregnancy or not via ICSI. Reprod Biomed Online. 2011;22(1):25–36. https://doi.org/10.1016/j.rbmo.2010.09.013.

    Article  PubMed  Google Scholar 

  50. Kawano M, Kawaji H, Grandjean V, Kiani J, Rassoulzadegan M. Novel small noncoding RNAs in mouse spermatozoa, zygotes and early embryos. PLoS One. 2012;7(9):e44542. https://doi.org/10.1371/journal.pone.0044542.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Siffroi JP, Dadoune JP. Accumulation of transcripts in the mature human sperm nucleus: implication of the haploid genome in a functional role. Ital J Anat Embryol. 2001;106(2 Suppl 2):189–97.

    PubMed  CAS  Google Scholar 

  52. Pittoggi C, Magnano AR, Sciamanna I, Giordano R, Lorenzini R, Spadafora C. Specific localization of transcription factors in the chromatin of mouse mature spermatozoa. Mol Reprod Dev. 2001;60(1):97–106. https://doi.org/10.1002/mrd.1066.

    Article  PubMed  CAS  Google Scholar 

  53. Niemann H, Tian XC, King WA, Lee RS. Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction. 2008;135(2):151–63. https://doi.org/10.1530/REP-07-0397.

    Article  PubMed  CAS  Google Scholar 

  54. Rassoulzadegan M, Grandjean V, Gounon P, Vincent S, Gillot I, Cuzin F. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature. 2006;441(7092):469–74. https://doi.org/10.1038/nature04674.

    Article  PubMed  CAS  Google Scholar 

  55. Wagner KD, Wagner N, Ghanbarian H, Grandjean V, Gounon P, Cuzin F, Rassoulzadegan M. RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse. Dev Cell. 2008;14(6):962–9. https://doi.org/10.1016/j.devcel.2008.03.009.

    Article  PubMed  CAS  Google Scholar 

  56. Grandjean V, Gounon P, Wagner N, Martin L, Wagner KD, Bernex F, Cuzin F, Rassoulzadegan M. The miR-124-Sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth. Development. 2009;136(21):3647–55. https://doi.org/10.1242/dev.041061.

    Article  PubMed  CAS  Google Scholar 

  57. Liebers R, Rassoulzadegan M, Lyko F. Epigenetic regulation by heritable RNA. PLoS Genet. 2014;10(4):e1004296. https://doi.org/10.1371/journal.pgen.1004296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Evsikov AV, Graber JH, Brockman JM, Hampl A, Holbrook AE, Singh P, Eppig JJ, Solter D, Knowles BB. Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes Dev. 2006;20(19):2713–27. https://doi.org/10.1101/gad.1471006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Motorin Y, Lyko F, Helm M. 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res. 2010;38(5):1415–30. https://doi.org/10.1093/nar/gkp1117.

    Article  PubMed  CAS  Google Scholar 

  60. Kiani J, Grandjean V, Liebers R, Tuorto F, Ghanbarian H, Lyko F, Cuzin F, Rassoulzadegan M. RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2. PLoS Genet. 2013;9(5):e1003498. https://doi.org/10.1371/journal.pgen.1003498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Cernilogar FM, Onorati MC, Kothe GO, Burroughs AM, Parsi KM, Breiling A, Lo Sardo F, Saxena A, Miyoshi K, Siomi H, Siomi MC, Carninci P, Gilmour DS, Corona DF, Orlando V. Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature. 2011;480(7377):391–5. https://doi.org/10.1038/nature10492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Song R, Hennig GW, Wu Q, Jose C, Zheng H, Yan W. Male germ cells express abundant endogenous siRNAs. Proc Natl Acad Sci U S A. 2011;108(32):13159–64. https://doi.org/10.1073/pnas.1108567108.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20(3):300–7. https://doi.org/10.1038/nsmb.2480.

    Article  PubMed  CAS  Google Scholar 

  64. Sharma U, Rando OJ. Father-son chats: inheriting stress through sperm RNA. Cell Metab. 2014;19(6):894–5. https://doi.org/10.1016/j.cmet.2014.05.015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Rando OJ. Daddy issues: paternal effects on phenotype. Cell. 2012;151(4):702–8. https://doi.org/10.1016/j.cell.2012.10.020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, Farinelli L, Miska E, Mansuy IM. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. 2014;17(5):667–9. https://doi.org/10.1038/nn.3695.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, Feng GH, Peng H, Zhang X, Zhang Y, Qian J, Duan E, Zhai Q, Zhou Q. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2016;351(6271):397–400. https://doi.org/10.1126/science.aad7977.

    Article  PubMed  CAS  Google Scholar 

  68. Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun F, Song L, Carone BR, Ricci EP, Li XZ, Fauquier L, Moore MJ, Sullivan R, Mello CC, Garber M, Rando OJ. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2016;351(6271):391–6. https://doi.org/10.1126/science.aad6780.

    Article  PubMed  CAS  Google Scholar 

  69. Savadi-Shiraz E, Edalatkhah H, Talebi S, Heidari-Vala H, Zandemami M, Pahlavan S, Modarressi MH, Akhondi MM, Paradowska-Dogan A, Sadeghi MR. Quantification of sperm specific mRNA transcripts (PRM1, PRM2, and TNP2) in teratozoospermia and normozoospermia: New correlations between mRNA content and morphology of sperm. Mol Reprod Dev. 2015;82:26–35.

    Article  CAS  PubMed  Google Scholar 

  70. Jodar M, Sendler E, Moskovtsev SI, Librach CL, Goodrich R, Swanson S, Hauser R, Diamond MP, Krawetz SA. Absence of sperm RNA elements correlates with idiopathic male infertility. Sci Transl Med. 2015;7:295re6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu W, Hu Z, Qin Y, Dong J, Dai J, Lu C, Zhang W, Shen H, Xia Y, Wang X. Seminal plasma microRNAs: potential biomarkers for spermatogenesis status. Mol Hum Reprod. 2012;18:489–97.

    Article  CAS  PubMed  Google Scholar 

  72. Montjean D, De La Grange P, Gentien D, Rapinat A, Belloc S, Cohen-Bacrie P, Menezo Y, Benkhalifa M. Sperm transcriptome profiling in oligozoospermia. J Assist Reprod Genet. 2012;29:3–10.

    Article  PubMed  Google Scholar 

  73. Bansal SK, Gupta N, Sankhwar SN, Rajender S. Differential genes expression between fertile and infertile spermatozoa revealed by transcriptome analysis. PLoS One. 2015;10:e0127007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang C, Yang C, Chen X, Yao B, Yang C, Zhu C, Li L, Wang J, Li X, Shao Y, Liu Y, Ji J, Zhang J, Zen K, Zhang CY, Zhang C. Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clin Chem. 2011;57:1722–31.

    Article  CAS  PubMed  Google Scholar 

  75. Lian J, Zhang X, Tian H, Liang N, Wang Y, Liang C, Li S, Sun F. Altered microRNA expression in patients with nonobstructive azoospermia. Reprod Biol Endocrinol. 2009;7:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Platts AE, Dix DJ, Chemes HE, Thompson KE, Goodrich RJ, Rockett JC, Rawe VY, Quintana S, Diamond MP, Strader LF, Krawetz SA. Success and failure in human spermatogenesis as revealed by teratozoospermic RNAs. Hum Mol Genet. 2007;16:763–73.

    Article  CAS  PubMed  Google Scholar 

  77. Abu-Halima M, Hammadeh M, Schmitt J, Leidinger P, Keller A, Meese E, Backes C. Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. Fertil Steril. 2013;99:1249–55.

    Article  CAS  PubMed  Google Scholar 

  78. Jodar M, Kalko S, Castillo J, Ballesca JL, Oliva R. Differential RNAs in the sperm cells of asthenozoospermic patients. Hum Reprod. 2012;27(5):1431–8.

    Article  CAS  PubMed  Google Scholar 

  79. Hu L, Wu C, Guo C, Li H, Xiong C. Identification of microRNAs predominately derived from testis and epididymis in human seminal plasma. Clin Biochem. 2014;47:967–72.

    Article  CAS  PubMed  Google Scholar 

  80. Garrido N, Martınez-Conejero JA, Jauregui J, Horcajadas JA, Simon C, Remohı J, Meseguer M. Microarray analysis in sperm from fertile and infertile men without basic sperm analysis abnormalities reveals a significantly different transcriptome. Fertil Steril. 2009;91:1307–10.

    Article  CAS  PubMed  Google Scholar 

  81. Avendano C, Franchi A, Jones E, Oehninger S. Pregnancy-specific b-1-glycoprotein 1 and human leukocyte antigen-E mRNA in human sperm: differential expression in fertile and infertile men and evidence of a possible functional role during early development. Hum Reprod. 2009;24(2):270–7.

    Article  CAS  PubMed  Google Scholar 

  82. Valcarce DG, Cartón-García F, Herráez MP, Robles V. Effect of cryopreservation on human sperm messenger RNAs crucial for fertilization and early embryo development. Cryobiology. 2013;67:84–90.

    Article  CAS  PubMed  Google Scholar 

  83. Wang H, Zhou Z, Xu M, Li J, Xiao J, Xu ZY, Sha J. A spermatogenesis-related gene expression profile in human spermatozoa and its potential clinical applications. J Mol Med (Berl). 2004;82:317–24.

    Article  Google Scholar 

  84. Linschooten JO, Van Schooten FJ, Baumgartner A, Cemeli E, Van Delft J, Anderson D, Godschalk RW. Use of spermatozoal mRNA profiles to study gene-environment interactions in human germ cells. Mutat Res. 2009;667:70–6.

    Article  CAS  PubMed  Google Scholar 

  85. Metzler-Guillemain C, Victorero G, Lepoivre C, Bergon A, Yammine M, Perrin J, Sari-Minodier I, Boulanger N, Rihet P, Nguyen C. Sperm mRNAs and microRNAs as candidate markers for the impact of toxicants on human spermatogenesis: an application to tobacco smoking. Syst Biol Reprod Med. 2015;61:139–49.

    Article  CAS  PubMed  Google Scholar 

  86. Nguyen MT, Delaney DP, Kolon TF. Gene expression alterations in cryptorchid males using spermatozoal microarray analysis. Fertil Steril. 2009;92:182–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas T. Carrell PhD, HCLD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simon, L., Carrell, D.T. (2018). Current and Future Perspectives on Sperm RNAs. In: Carrell, D., Racowsky, C., Schlegel, P., DeCherney, A. (eds) Emerging Topics in Reproduction. Springer, Cham. https://doi.org/10.1007/978-3-319-90823-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90823-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90822-9

  • Online ISBN: 978-3-319-90823-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics