Skip to main content

Role of Adenosine Receptors in Clinical Biophysics Based on Pulsed Electromagnetic Fields

  • Chapter
  • First Online:
The Adenosine Receptors

Part of the book series: The Receptors ((REC,volume 34))

Abstract

Clinical biophysics studies the effects of physical agents such as the low frequency low energy pulsed electromagnetic fields (PEMFs) utilized for the treatment of different human pathologies. Much research activity has focused on the mechanisms of interaction and the metabolic pathways involved between PEMFs and the A1, A2A, A2B, and A3 adenosine receptors (ARs). In particular, PEMF exposure mediates a significant upregulation of A2A and A3ARs expressed in various cells and tissues present in both the peripheral and central nervous system involving primarily a significant reduction in some of the most interesting pro-inflammatory cytokines. Of interest is that PEMFs through the increase of ARs enhance the working efficiency of adenosine, producing a more physiological effect than the use of drugs without the side effects, desensitization, and receptor downregulation often related to the use of agonists. This observation suggests the hypothesis that PEMFs may be an interesting approach as a noninvasive treatment with a low impact on daily life mediating a significant increase on the effect of the endogenous modulator. In this chapter, the role of ARs and PEMFs and their relevance in various inflammatory diseases in both peripheral or in central nervous system disorders will be reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaron RK, Boyan BD, Ciombor DM et al (2004) Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin Orthop Relat Res 419:30–37

    Article  Google Scholar 

  • Aaron RK, Ciombor DM, Wang S et al (2006) Clinical biophysics: the promotion of skeletal repair by physical forces. Ann N Y Acad Sci 1068:513–531

    Article  PubMed  CAS  Google Scholar 

  • Adravanti P, Nicoletti S, Setti S et al (2014) Effect of pulsed electromagnetic field therapy in patients undergoing total knee arthroplasty: a randomised controlled trial. Int Orthop 38:397–403

    Article  PubMed  Google Scholar 

  • Alcantara DZ, Soliman IJS, Pobre RF et al (2017) Effects of pulsed electromagnetic fields on breast Cancer cell line MCF 7 using absorption spectroscopy. Anticancer Res 37:3453–3459

    PubMed  Google Scholar 

  • Arnao V, Acciarresi M, Cittadini E et al (2016) Stroke incidence, prevalence and mortality in women worldwide. Int J Stroke 11:287–301

    Article  PubMed  Google Scholar 

  • Barth A, Ponocny-Seliger E, Vana N et al (2010) Effects of extremely low frequency magnetic field exposure on cognitive functions: results of a meta- analysis. Bioelectromagnetics 31:173–179

    PubMed  Google Scholar 

  • Benazzo F, Cadossi M, Cavani F et al (2008a) Cartilage repair with osteochondral autografts in sheep: effect of biophysical stimulation with pulsed electromagnetic fields. J Orthop Res 26:631–642

    Article  PubMed  Google Scholar 

  • Benazzo F, Zanon G, Pederzini L et al (2008b) Effects of biophysical stimulation in patients undergoing arthroscopic reconstruction of anterior cruciate ligament: prospective, randomized and double blind study. Knee Surg Sports Traumotol Arthrosc 16:595–601

    Article  Google Scholar 

  • Bersani F, Marinelli F, Ognibene A et al (1997) Intramembrane protein distribution in cell cultures is affected by 50 Hz pulsed magnetic fields. Bioelectromagnetics 18:463–469

    Article  PubMed  CAS  Google Scholar 

  • Bialy D, Wawrzynska M, Bil-Lula I et al (2015) Low frequency electromagnetic field conditioning protects against I/R injury and contractile dysfunction in the isolated rat heart. Biomed Res Int 2015:396593

    Article  PubMed  PubMed Central  Google Scholar 

  • Borea PA, Dalpiaz A, Varani K et al (2000) Can thermodynamic measurements of receptor binding yield information on drug affinity and efficacy? Biochem Pharmacol 60:1549–1556

    Article  PubMed  CAS  Google Scholar 

  • Borea PA, Varani K, Vincenzi F et al (2015) The A3 adenosine receptor: history and perspectives. Pharmacol Rev 67:74–102

    Article  PubMed  CAS  Google Scholar 

  • Borea PA, Gessi S, Merighi S et al (2016) Adenosine as a multi-signalling guardian angel in human diseases: when, where and how does it exert its protective effects? Trends Pharmacol Sci 37:419–434

    Article  CAS  PubMed  Google Scholar 

  • Brighton CT, Wang W, Seldes R et al (2001) Signal transduction in electrically stimulated bone cells. J Bone Joint Surg Am 83:1514–1523

    Article  PubMed  Google Scholar 

  • Cadossi R, Bersani F, Cossarizza A et al (1992) Lymphocytes and low-frequency electromagnetic fields. FASEB J 6:2667–2674

    Article  PubMed  CAS  Google Scholar 

  • Cadossi M, Buda RE, Ramponi L et al (2014) Bone marrow-derived cells and biophysical stimulation for talar osteochondral lesions: a randomized controlled study. Foot Ankle Int 35:981–987

    Article  PubMed  Google Scholar 

  • Cadossi R, Cadossi M, Setti S (2015) Physical regulation in cartilage and bone repair. In: Markov M (ed) Electromagnetic fields in biology and medicine. CRC Press, Boca Raton, Florida, USA pp 253–272

    Google Scholar 

  • Cadossi R, Setti S, Cadossi M et al (2017) Physical dynamics: the base for the development of biophysical treatments. In: Markov M (ed) Dosimetry in bioelectromagnetics. CRC Press, Boca Raton, Florida, USA pp 87–100

    Google Scholar 

  • Callaghan MH, Chang EJ, Seiser N et al (2008) Pulsed electromagnetic fields accelerate normal and diabetic wound healing by increasing endogenous FGF-2 release. Plast Reconstr Surg 121:130–141

    Article  PubMed  CAS  Google Scholar 

  • Capelli E, Torrisi F, Venturini L et al (2017) Low-frequency pulsed electromagnetic field is able to modulate miRNAs in an experimental cell model of Alzheimer’s disease. J Health Eng 2017:2530270

    Google Scholar 

  • Capone F, Dileone M, Profice P et al (2009) Does exposure to extremely low frequency magnetic fields produce functional changes in human brains? J Neural Transm 116:257–265

    Article  PubMed  CAS  Google Scholar 

  • Capone F, Corbetto M, Barbato C et al (2014) An open label, one arm, dose escalation study to evaluate the safety of extremely low frequency magnetic fields in acute ischemic stroke. Austin Journal of Cerebrovascular Disease & Stroke 1:1002

    Google Scholar 

  • Capone F, Liberti M, Apollonio F et al (2017) An open-label, one-arm, dose-escalation study to evaluate safety and tolerability of extremely low frequency magnetic fields in acute ischemic stroke. Sci Rep 7:12145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen AD, Yang DI, Lin TK et al (2011) Roles of oxidative stress, apoptosis, PGC-1α and mithochondrial biogenesis in cerebral ischemia. Int J Mol Sci 12:7199–7215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiabrera A, Bianco B, Moggia E et al (2000) Zeeman-Stark modeling of the RF EMF interaction with ligand binding. Bioelectromagnetics 21:312–324

    Article  PubMed  CAS  Google Scholar 

  • Collarile M, Sambri A, Lullini G et al (2018) Biophysical stimulation improves clinical results of matrix-assisted autologous chondrocyte implantation in the treatment of chondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc 26:1223–1229

    Google Scholar 

  • Cook CM, Peek MJ (2004) Survey of the management of preterm labour in Australia and New Zealand in 2002. Aust N Z J Obstet Gynaecol 44:35–38

    Article  PubMed  Google Scholar 

  • Cook CM, Thomas AW, Prato FS (2002) Human electrophysiological and cognitive effects of exposure to ELF magnetic and ELF modulated RF and microwave fields: a review of recent studies. Bioelectromagnetics 23:144–157

    Article  PubMed  CAS  Google Scholar 

  • Cook CM, Saucier DM, Thomas AW et al (2006) Exposure to ELF magnetic and ELF-modulated radiofrequency fields: the time course of physiological and cognitive effects observed in recent studies (2001-2005). Bioelectromagnetics 23:144–157

    Article  Google Scholar 

  • Coskun O, Comlekci S (2013) The influence of pulsed electric field on hematological parameters in rat. Toxicol Ind Health 29:862–866

    Article  PubMed  Google Scholar 

  • Crocetti S, Beyer C, Schade G et al (2013) Low intensity and frequency pulsed electromagnetic fields selectively impair breast cancer cell viability. PLoS One 8:e72944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cvetkovic D, Cosic I (2009) Alterations of human electroencephalographic activity caused by multiple extremely low frequency magnetic field exposures. Med Biol Eng Comput 47:1063–1073

    Article  PubMed  Google Scholar 

  • Dalpiaz A, Scatturin A, Varani K et al (2000) Binding thermodynamics and intrinsic activity of adenosine A1 receptor ligands. Life Sci 67:1517–1524

    Article  CAS  PubMed  Google Scholar 

  • de Girolamo L, Stanco D, Galliera E et al (2013) Low frequency pulsed electromagnetic field affects proliferation, tissue-specific gene expression, and cytokines release of human tendon cells. Cell Biochem Biophys 66:697–708

    Article  PubMed  CAS  Google Scholar 

  • de Girolamo L, Viganò M, Galliera E et al (2015) In vitro functional response of human tendon cells to different dosages of low-frequency pulsed electromagnetic field. Knee Surg Sports Traumatol Arthrosc 23:3443–3453

    Article  PubMed  Google Scholar 

  • De Mattei M, Caruso A, Pezzetti F et al (2001) Effects of pulsed electromagnetic fields on human articular chondrocyte proliferation. Connect Tissue Res 42:269–279

    Article  PubMed  Google Scholar 

  • De Mattei M, Pasello M, Pellati A et al (2003) Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants. Connect Tissue Res 44:154–159

    Article  PubMed  CAS  Google Scholar 

  • De Mattei M, Varani K, Masieri FF et al (2009) Adenosine analogs and electromagnetic fields inhibit prostaglandin E2 release in bovine synovial fibroblasts. Osteoarthr Cartil 17:252–262

    Article  Google Scholar 

  • Deb P, Sharma S, Hassan KM (2010) Pathophysiologic mechanisms of acute ischemic stroke: an overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology 17:197–218

    Article  PubMed  CAS  Google Scholar 

  • Di Lazzaro V (2016) Low-frequency pulsed electromagnetic fields (ELF-MF) as treatment for acute ischemic stroke (I-NIC). clinicaltrials.gov. In: NCT02767778

    Google Scholar 

  • Di Lazzaro V, Capone F, Apollonio F et al (2013) A consensus panel review of central nervous system effects of the exposure to low-intensity extremely low-frequency magnetic fields. Brain Stimul 6:469–476

    Article  PubMed  Google Scholar 

  • Ehnert S, Fentz AK, Schreiner A et al (2017) Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of O2- and H2 O2 . Sci Rep 7:14544

    Google Scholar 

  • Ferroni L, Tocco I, De Pieri A et al (2016) Pulsed magnetic therapy increases osteogenic differentiation of mesenchymal stem cells only if they are pre-committed. Life Sci 152:44–51

    Article  PubMed  CAS  Google Scholar 

  • Fini M, Cadossi R, Canè V et al (2002) The effect of pulsed electromagnetic fields on the osteointegration of hydroxyapatite implants in cancellous bone: a morphologic and microstructural in vivo study. J Orthop Res 20:756–763

    Article  PubMed  CAS  Google Scholar 

  • Fini M, Giavaresi G, Carpi A et al (2005a) Effects of pulsed electromagnetic fields on articular hyaline cartilage: review of experimental and clinical studies. Biomedical Pharmacotherapeutics 59:388–394

    Article  CAS  Google Scholar 

  • Fini M, Giavaresi G, Torricelli P et al (2005b) Pulsed electromagnetic fields reduce knee osteoarthritic lesion progression in the aged Dunkin Hartley guinea pig. J Orthop Res 23:899–908

    Article  PubMed  CAS  Google Scholar 

  • Fini M, Torricelli P, Giavaresi G et al (2008) Effect of pulsed electromagnetic field stimulation on knee cartilage, subchondral and epyphiseal trabecular bone of aged Dunkin Hartley guinea pigs. Biomed Pharmacother 62:709–715

    Article  PubMed  Google Scholar 

  • Fini M, Pagani S, Giavaresi G et al (2013) Functional tissue engineering in articular cartilage repair: is there a role for electromagnetic biophysical stimulation? Tissue Eng Part B Rev 19:353–367

    Article  PubMed  CAS  Google Scholar 

  • Fishman P, Bar-Yehuda S, Synowitz M et al (2009) Adenosine receptors and cancer. Handb Exp Pharmacol 193:399–441

    Article  CAS  Google Scholar 

  • Fishman P, Bar-Yehuda S, Liang BT et al (2012) Pharmacological and therapeutic effects of A3 adenosine receptor agonists. Drug Discov Today 17:359–366

    Article  CAS  PubMed  Google Scholar 

  • Gessi S, Fogli E, Sacchetto V et al (2008) Thermodynamics of A2B adenosine receptor binding discriminates agonistic from antagonistic behavior. Biochem Pharmacol 75:562–569

    Article  PubMed  CAS  Google Scholar 

  • Gessi S, Merighi S, Fazzi D et al (2011) Adenosine receptor targeting in health and disease. Expert Opin Investig Drugs 20:1591–1609

    Article  PubMed  CAS  Google Scholar 

  • Ghione S, Del Seppia C, Mezzasalma L et al (2004) Human head exposure to a 37 Hz electromagnetic field: effects on blood pressure, somatosensory perception, and related parameters. Bioelectromagnetics 25:167–175

    Article  PubMed  CAS  Google Scholar 

  • Ghione S, Seppia CD, Mezzasalma L et al (2005) Effects of 50 Hz electromagnetic fields on electroencephalographic alpha activity, dental pain threshold and cardiovascular parameters in humans. Neurosci Lett 382:112–117

    Article  PubMed  CAS  Google Scholar 

  • Giusti A, Giovale M, Ponte M et al (2013) Short-term effect of low-intensity, pulsed, electromagnetic fields on gait characteristics in older adults with low bone mineral density: a pilot randomized-controlled trial. Geriatr Gerontol Int 13:393–397

    Article  PubMed  Google Scholar 

  • Gobbi A, Lad D, Petrera M et al (2013) Symptomatic early osteoarthritis of the knee treated with pulsed electromagnetic fields: two year follow up. Cartilage 20:1–8

    Google Scholar 

  • Gómez-Ochoa I, Gómez-Ochoa P, Gómez-Casal F et al (2011) Pulsed electromagnetic fields decrease proinflammatory cytokine secretion (IL-1β and TNF-α) on human fibroblast-like cell culture. Rheumatol Int 3:1283–1289

    Article  CAS  Google Scholar 

  • Grant G, Cadossi R, Steinberg G (1994) Protection against focal cerebral ischemia following exposure to a pulsed electromagnetic field. Bioelectromagnetics. Journal 15:205–216

    CAS  Google Scholar 

  • Hannemann PF, Mommers EH, Schots JP et al (2014) The effects of low-intensity pulsed ultrasound and pulsed electromagnetic fields bone growth stimulation in acute fractures: a systematic review and meta-analysis of randomized controlled trials. Arch Orthop Trauma Surg 134:1093–1106

    Article  PubMed  CAS  Google Scholar 

  • Huegel J, Choi DS, Nuss CA et al (2018) Effects of pulsed electromagnetic field therapy at different frequencies and durations on rotator cuff tendon-to-bone healing in a rat model. J Shoulder Elbow Surg 27:553–560

    Google Scholar 

  • Iwasa K, Reddi AH (2018) Electromagnetic fields and tissue engineering of the joints. Tissue Eng Part B Rev 24:144–154

    Google Scholar 

  • Jacobson KA, Merighi S, Varani K et al (2018) A3 adenosine receptors as modulators of inflammation: from medicinal chemistry to therapy. Med Res Rev 38:1031–1072

    Google Scholar 

  • Jiménez-García NN, Arellanes-Robledom J, Aparicio-Bautista DI et al (2010) Anti-proliferative effect of extremely low frequency electromagnetic field on preneoplastic lesions formation in the rat liver. BMC Cancer 10:159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jing D, Zhai M, Tong S et al (2016) Pulsed electromagnetic fields promote osteogenesis and osseointegration of porous titanium implants in bone defect repair through a Wnt/β-catenin signaling-associated mechanism. Sci Rep 6:ID32045

    Article  CAS  Google Scholar 

  • Johnson MT, Vanscoy-Cornett A, Vesper DN et al (2001) Electromagnetic fields used clinically to improve bone healing also impact lymphocyte proliferation in vitro. Biomed Sci Instrum 37:215–220

    PubMed  CAS  Google Scholar 

  • Kamel DM, Hamed NS, Abdel Raoof NA et al (2017) Pulsed magnetic field versus ultrasound in the treatment of postnatal carpal tunnel syndrome: a randomized controlled trial in the women of an Egyptian population. J Adv Res 8:45–53

    Article  PubMed  Google Scholar 

  • Kapi E, Bozkurt M, Selcuk CT et al (2015) Comparison of effects of pulsed electromagnetic field stimulation on platelet-rich plasma and bone marrow stromal stem cell using rat zygomatic bone defect model. Ann Plast Surg 75:565–571

    Article  PubMed  CAS  Google Scholar 

  • Kaszuba-ZwoiÅ„ska J, ĆwikliÅ„ska M, Balwierz W et al (2015) Changes in cell death of peripheral blood lymphocytes isolated from children with acute lymphoblastic leukemia upon stimulation with 7 Hz, 30 mT pulsed electromagnetic field. Cell Mol Biol Lett 20:130–142

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T (2004) Principles: receptor theory in pharmacology. Trends Pharmacol Sci 25:186–192

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T (2013) New concepts in pharmacological efficacy at 7TM receptors: IUPHAR review 2. Br J Pharmacol 168:554–575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kenakin T (2017) Signaling bias in drug discovery. Expert Opin Drug Discov 12:321–333

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann H, Kirchoff F, Verhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77:10–18

    Article  PubMed  CAS  Google Scholar 

  • Khooshideh M, Latifi Rostami SS, Sheikh M et al (2017) Pulsed electromagnetic fields for postsurgical pain management in women undergoing cesarean section: a randomized, double-blind, placebo-controlled trial. Clin J Pain 33:142–147

    Article  PubMed  Google Scholar 

  • Legros A, Beuter A (2005) Effect of a low intensity magnetic field on human motor behavior. Bioelectromagnetics 26:657–669

    Article  PubMed  Google Scholar 

  • Legros A, Beuter A (2006) Individual subject sensitivity to extremely low frequency magnetic field. Neurotoxicology 27:534–546

    Article  PubMed  Google Scholar 

  • Li RL, Huang JJ, Shi YQ et al (2015) Pulsed electromagnetic field improves postnatal neovascularization in response to hindlimb ischemia. Am J Transl Res 7:430–444

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lim S, Kim SC, Kim JY (2015) Protective effect of 10-Hz, 1-mT electromagnetic field exposure against hypoxia/reoxygenation injury in HK-2 cells. Biomed Environ Sci 28:231–234

    PubMed  Google Scholar 

  • Lotz MK, Kraus VB (2010) New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res Ther 12:211

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma F, Li W, Li X et al (2016) Novel protective effects of pulsed electromagnetic field ischemia/reperfusion injury rats. Biosci Rep 36(6):pii: e00420

    Article  CAS  Google Scholar 

  • Marcheggiani Muccioli GM, Grassi A, Setti S et al (2013) Conservative treatment of spontaneous osteonecrosis of the knee in the early stage: pulsed electromagnetic fields therapy. Eur J Radiol 82:530–537

    Article  PubMed  CAS  Google Scholar 

  • Massari L, Benazzo F, De Mattei M et al (2007) CRES study group. Effects of electrical physical stimuli on articular cartilage. J Bone Joint Surg Am 89:152–161

    PubMed  Google Scholar 

  • Massari L, Osti F, Lorusso V et al (2015) Biophysical stimulation and the periprosthetic bone: is there a rationale in the use of pulsed electromagnetic fields after a hip or knee implant? Journal of Biological Regulator and Homeostatic Agents 29:1013–1015

    CAS  Google Scholar 

  • Merighi S, Varani K, Gessi S et al (2002) Binding thermodynamics at the human A3 adenosine receptor. Biochem Pharmacol 63:157–161

    Article  CAS  PubMed  Google Scholar 

  • Moretti B, Notarnicola A, Moretti L et al (2012) I-ONE therapy in patients undergoing total knee arthroplasty: a prospective, randomized and controlled study. BMC Musculoskelet Disord 13:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Ongaro A, Pellati A, Masieri FF et al (2011) Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants. Bioelectromagnetics 32:543–551

    Article  PubMed  CAS  Google Scholar 

  • Ongaro A, Varani K, Masieri FF et al (2012) Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E(2) and cytokine release in human osteoarthritic synovial fibroblasts. J Cell Physiol 227:2461–2469

    Article  PubMed  CAS  Google Scholar 

  • Pagani S, Veronesi F, Aldini NN et al (2017) Complex regional pain syndrome type I, a debilitating and poorly understood syndrome. Possible role for pulsed electromagnetic fields: a narrative review. Pain Physician 20:E807–E822

    PubMed  Google Scholar 

  • Pena-Philippides JC, Yang Y, Bragina O et al (2014) Effect of pulsed electromagnetic field (PEMF) on infarct size and inflammation after cerebral ischemia in mice. Transl Stroke Res 5:491–500

    Article  PubMed  CAS  Google Scholar 

  • Prato FS, Thomas AW, Cook CM (2001) Human standing balance is affected by exposure to pulsed ELF magnetic fields: light intensity-dependent effects. Neuroreport 12:1501–1505

    Article  PubMed  CAS  Google Scholar 

  • Rohde C, Chiang A, Adipoju O et al (2010) Effects of pulsed electromagnetic fields on interleukin-1 beta and postoperative pain: a double-blind, placebo-controlled, pilot study in breast reduction patients. Plast Reconstr Surg 125:1620–1629

    Article  PubMed  CAS  Google Scholar 

  • Servodio Iammarrone C, Cadossi M, Sambri A et al (2016) Is there a role of pulsed electromagnetic fields in management of patellofemoral pain syndrome? Randomized controlled study at one year follow-up. Bioelectromagnetics 37:81–88

    Article  PubMed  CAS  Google Scholar 

  • Sollazzo V, Palmieri A, Pezzetti F et al (2010) Effects of pulsed electromagnetic fields on human osteoblast like cells (MG-63): a pilot study. Clin Orthop Relat Res 468:2260–2277

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevens P (2007) Affective response to a 5 microT ELF magnetic field-induced physiological changes. Bioelectromagnetics 28:109–114

    Article  PubMed  Google Scholar 

  • Sun J, Kwan RL, Zheng Y et al (2016) Effects of pulsed electromagnetic fields on peripheral blood circulation in people with diabetes: a randomized controlled trial. Bioelectromagnetics 37:290–297

    Article  PubMed  Google Scholar 

  • Thomas AW, Drost DJ, Prato FS (2001) Huuman subjects exposed to a specific pulsed (200 microT) magnetic field: effects on normal standing balance. Neurosci Lett 297:121–124

    Article  PubMed  CAS  Google Scholar 

  • Tschon M, Veronesi F, Contartese D et al (2018) Effects of pulsed electromagnetic fields and platelet rich plasma in preventing osteoclastogenesis in an in vitro model of osteolysis. J Cell Physiol 233:2645–2656

    Article  PubMed  CAS  Google Scholar 

  • Vadalà M, Vallelunga A, Palmieri L et al (2015) Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson’s disease. Behav Brain Funct 11:26

    Article  PubMed  PubMed Central  Google Scholar 

  • van Belkum SM, Bosker FJ, Kortekaas R et al (2016) Treatment of depression with low-strength transcranial pulsed electromagnetic fields: a mechanistic point of view. Prog Neuro-Psychopharmacol Biol Psychiatry 71:137–143

    Article  Google Scholar 

  • Varani K, Gessi S, Dalpiaz A et al (1997) Characterization of A2A adenosine receptors in human lymphocyte membranes by [3H]-SCH 58261 binding. Br J Pharmacol 122:386–392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varani K, Gessi S, Dionisotti S et al (1998) [3H]-SCH 58261 labelling of functional A2A adenosine receptors in human neutrophil membranes. Br J Pharmacol 123:1723–1731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varani K, Gessi S, Merighi S et al (2002) Effect of low frequency electromagnetic fields on A2A adenosine receptors in human neutrophils. Br J Pharmacol 136:57–66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varani K, Gessi S, Merighi S et al (2003) Alteration of A3 adenosine receptors in human neutrophils and low frequency electromagnetic fields. Biochem Pharmacol 66:1897–1906

    Article  PubMed  CAS  Google Scholar 

  • Varani K, De Mattei M, Vincenzi F et al (2008) Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields. Osteoarthr Cartil 16:292–304

    Article  CAS  Google Scholar 

  • Varani K, Vincenzi F, Tosi A et al (2010) Expression and functional role of adenosine receptors in regulating inflammatory responses in human synoviocytes. Br J Pharmacol 160:101–115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varani K, Maniero S, Vincenzi F et al (2011) A3 receptors are overexpressed in pleura from patients with mesothelioma and reduce cell growth via Akt/nuclear factor-κB pathway. Am J Respir Crit Care Med 183(4):522–530

    Article  PubMed  CAS  Google Scholar 

  • Varani K, Vincenzi F, Targa M et al (2012) Effect of pulsed electromagnetic field exposure on adenosine receptors in rat brain. Bioelectromagnetics 33:279–287

    Article  PubMed  CAS  Google Scholar 

  • Varani K, Vincenzi F, Targa M et al (2013) The stimulation of A3 adenosine receptors reduces bone-residing breast cancer in a rat preclinical model. Eur J Cancer 49:482–491

    Article  PubMed  CAS  Google Scholar 

  • Varani K, Vincenzi F, Merighi S et al (2017a) Biochemical and pharmacological role of A1 adenosine receptors and their modulation as novel therapeutic strategy. Adv Exp Med Biol 1051:193–232

    Article  PubMed  Google Scholar 

  • Varani K, Vincenzi F, Ravani A et al (2017b) Adenosine receptors as a biological pathway for the anti-inflammatory and beneficial effects of low frequency low energy pulsed electromagnetic fields. Mediat Inflamm 2017:ID 27440963

    Article  CAS  Google Scholar 

  • Veronesi F, Torricelli P, Giavaresi G et al (2014) In vivo effect of two different pulsed electromagnetic field frequencies on osteoarthritis. Journal of Orthopaedic Reseach 32:677–685

    Article  CAS  Google Scholar 

  • Veronesi F, Cadossi M, Giavaresi G et al (2015) Pulsed electromagnetic fields combined with a collagenous scaffold and bone marrow concentrate enhance osteochondral regeneration: an in vivo study. BMC Musculoskelet Disorders 16:233

    Article  CAS  Google Scholar 

  • Vincenzi F, Targa M, Corciulo C et al (2012) The anti-tumor effect of A3 adenosine receptors is potentiated by pulsed electromagnetic fields in cultured neural cancer cells. PLoS One 7:ID e39317

    Article  CAS  Google Scholar 

  • Vincenzi F, Targa M, Corciulo C et al (2013) Pulsed electromagnetic fields increased the anti-inflammatory effect of A2A and A3 adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS One 8:e65561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vincenzi F, Ravani A, Pasquini S et al (2017) Pulsed electromagnetic field exposure reduces hypoxia and inflammation damage in neuron-like and microglial cell. J Cell Physiol 232:1200–1208

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184:53–68

    Article  PubMed  CAS  Google Scholar 

  • Xie YX, Shi WG, Zhou J et al (2016) Pulsed electromagnetic fields stimulate osteogenic differentiation and maturation of osteoblasts by upregulating the expression of BMPRII localized at the base of primary cilium. Bone 93:22–32

    Article  PubMed  CAS  Google Scholar 

  • Xing C, Arai K, Lo EH et al (2012) Pathophysiologic cascades in ischemic stroke. Int J Stroke 7(5):378–385

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X, He H, Gao Q et al (2018) Pulsed electromagnetic field improves subchondral bone microstructure in knee osteoarthritis rats through a Wnt/β -catenin signaling-associated mechanism. Bioelectromagnetics 39:89–97

    Google Scholar 

  • Zhai Y, Jing D, Tong S et al (2016) Pulsed electromagnetic fields promote in vitro osteoblastogenesis through a Wnt/β-catenin signaling-associated mechanism. Bioelectromagnetics. https://doi.org/10.1002/bem.21961

  • Zhu S, He H, Zhang C et al (2017) Effects of pulsed electromagnetic fields on postmenopausal osteoporosis. Bioelectromagnetics 38:406–424

    Article  PubMed  Google Scholar 

  • Zorzi C, Dall’oca C, Cadossi R et al (2007) Effects of pulsed electromagnetic fields on patients’ recovery after arthroscopic surgery: prospective, randomized and double-blind study. Knee Surgery Sports Traumatology Arthroscopy 15:830–834

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katia Varani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varani, K., Vincenzi, F., Cadossi, M., Setti, S., Borea, P.A., Cadossi, R. (2018). Role of Adenosine Receptors in Clinical Biophysics Based on Pulsed Electromagnetic Fields. In: Borea, P., Varani, K., Gessi, S., Merighi, S., Vincenzi, F. (eds) The Adenosine Receptors. The Receptors, vol 34. Humana Press, Cham. https://doi.org/10.1007/978-3-319-90808-3_24

Download citation

Publish with us

Policies and ethics