Skip to main content

Adenosine Receptors and Current Opportunities to Treat Cancer

  • Chapter
  • First Online:
The Adenosine Receptors

Part of the book series: The Receptors ((REC,volume 34))

Abstract

Adenosine is an endogenous modulator exerting its physiological effects by activating four A1, A2A, A2B, and A3 adenosine receptors. This nucleoside increases in hypoxia that characterizes solid tumors, thus affecting vasculature, immunoescaping, and cancer growth. This chapter offers an updated overview on the current opportunities to treat tumors coming from the adenosinergic field. Several years of research has led to the conclusion that A2A and A3 subtypes are the most promising for drug development. As for A3 receptors, consequent to the efficacy of their agonists in numerous animal models of cancer, the lead compound, Namodenoson, has entered in clinical trials for hepatocellular carcinoma. Phase I results proved its optimal safety profile and efficacy, so that phase II studies are in progress. Specifically, A2A receptor is responsible for immunosuppressive effects, reducing antitumor immunity and promoting immunoescaping of cancer. Therefore, A2A receptor antagonists have been proposed to fight cancer by enhancing immunotherapy, supported also by their safety already demonstrated in clinical trials for Parkinson’s disease. Overall, from these positive results, it may be expected that A3 agonists and A2A antagonists may become future anticancer drugs with the ability to save and improve human health also for diseases with very limited treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghaei M, Panjehpour M, Karami-Tehrani F, Salami S (2011) Molecular mechanisms of A3 adenosine receptor-induced G1 cell cycle arrest and apoptosis in androgen-dependent and independent prostate cancer cell lines: involvement of intrinsic pathway. J Cancer Res Clin Oncol 137:1511–1523

    Article  CAS  PubMed  Google Scholar 

  • Allard D, Allard B, Gaudreau P-O et al (2016) CD73-adenosine: a next-generation target in immuno-oncology. Immunotherapy 8:145–163

    Article  CAS  PubMed  Google Scholar 

  • Antonioli L, Csóka B, Fornai M et al (2014) Adenosine and inflammation: what’s new on the horizon? Drug Discov Today 19:1051–1068

    Article  CAS  PubMed  Google Scholar 

  • Bao R, Shui X, Hou J et al (2016) Adenosine and the adenosine A2A receptor agonist, CGS21680, upregulate CD39 and CD73 expression through E2F-1 and CREB in regulatory T cells isolated from septic mice. Int J Mol Med 38:969–975

    Article  CAS  PubMed  Google Scholar 

  • Bar-Yehuda S, Farbstein T, Barer F et al (1999) Oral administration of muscle derived small molecules inhibits tumor spread while promoting normal cell growth in mice. Clin Exp Metastasis 17:531–535

    Article  CAS  PubMed  Google Scholar 

  • Bar-Yehuda S, Barer F, Volfsson L, Fishman P (2001) Resistance of muscle to tumor metastases: a role for a3 adenosine receptor agonists. Neoplasia 3:125–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Yehuda S, Madi L, Barak D et al (2002) Agonists to the A3 adenosine receptor induce G-CSF production via NF-k B activation: a new class of myeloprotective agents. Exp Hematol 30:1390–1398

    Article  CAS  PubMed  Google Scholar 

  • Bar-Yehuda S, Madi L, Silberman D et al (2005) CF101, an agonist to the a 3 adenosine receptor, enhances the chemotherapeutic effect of 5-fluorouracil in a Colon carcinoma murine model. Neoplasia 7:85–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Yehuda S, Stemmer SM, Madi L et al (2008) The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-kappaB signal transduction pathways. Int J Oncol 33:287–295

    PubMed  CAS  Google Scholar 

  • Beavis PA, Divisekera U, Paget C et al (2013) Blockade of A2A receptors potently suppresses the metastasis of CD73 + tumors. Proc Natl Acad Sci 110:14711–14716

    Article  PubMed  Google Scholar 

  • Beavis PA, Milenkovski N, Henderson MA et al (2015) Adenosine receptor 2A blockade increases the efficacy of anti-PD-1 through enhanced antitumor T-cell responses. Cancer Immunol Res 3:506–517

    Article  CAS  PubMed  Google Scholar 

  • Blay J, White TD, Hoskin DW (1997) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 57:2602–2605

    PubMed  CAS  Google Scholar 

  • Borea PA, Gessi S, Merighi S, Varani K (2016) Adenosine as a multi-Signalling Guardian angel in human diseases: when, where and how does it exert its protective effects? Trends Pharmacol Sci 37:419–434

    Article  CAS  PubMed  Google Scholar 

  • Borea PA, Gessi S, Merighi S et al (2017) Pathological overproduction: the bad side of adenosine. Br J Pharmacol 174:1945–1960

    Article  CAS  PubMed  Google Scholar 

  • Bruzzese L, Fromonot J, By Y et al (2014) NF-κB enhances hypoxia-driven T-cell immunosuppression via upregulation of adenosine A2A receptors. Cell Signal 26:1060–1067

    Article  CAS  PubMed  Google Scholar 

  • Carpenter B, Nehmé R, Warne T et al (2016) Structure of the adenosine A2A receptor bound to an engineered G protein. Nature 536:104–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen S, Stemmer SM, Zozulya G et al (2011) CF102 an A3 adenosine receptor agonist mediates anti-tumor and anti-inflammatory effects in the liver. J Cell Physiol 226:2438–2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fishman P, Bar-Yehuda S, Vagman L (1998) Adenosine and other low molecular weight factors released by muscle cells inhibit tumor cell growth. Cancer Res 58:3181–3187

    PubMed  CAS  Google Scholar 

  • Fishman P, Bar-Yehuda S, Farbstein T et al (2000a) Adenosine acts as a Chemoprotective agent by stimulating G-CSF production: a role for A1 and A3 adenosine receptors. J Cell Physiol 183:393–398

    Article  CAS  PubMed  Google Scholar 

  • Fishman P, Bar-Yehuda S, Ohana G et al (2000b) Adenosine acts as an inhibitor of lymphoma cell growth: a major role for the A3 adenosine receptor. Eur J Cancer 36:1452–1458

    Article  CAS  PubMed  Google Scholar 

  • Fishman P, Bar-Yehuda S, Barer F et al (2001) The A3 adenosine receptor as a new target for cancer therapy and chemoprotection. Exp Cell Res 269:230–236

    Article  CAS  PubMed  Google Scholar 

  • Fishman P, Bar-Yehuda S, Madi L, Cohn I (2002a) A3 adenosine receptor as a target for cancer therapy. Anti-Cancer Drugs 13:437–443

    Article  CAS  PubMed  Google Scholar 

  • Fishman P, Madi L, Bar-Yehuda S et al (2002b) Evidence for involvement of Wnt signaling pathway in IB-MECA mediated suppression of melanoma cells. Oncogene 21:4060–4064

    Article  CAS  PubMed  Google Scholar 

  • Fishman P, Bar-Yehuda S, Ardon E et al (2003) Targeting the A3 adenosine receptor for cancer therapy: inhibition of prostate carcinoma cell growth by A3AR agonist. Anticancer Res 23:2077–2083

    PubMed  CAS  Google Scholar 

  • Fishman P, Bar-Yehuda S, Ohana G et al (2004) An agonist to the A3 adenosine receptor inhibits colon carcinoma growth in mice via modulation of GSK-3 beta and NF-kappa B. Oncogene 23:2465–2471

    Article  CAS  PubMed  Google Scholar 

  • Fishman P, Bar-Yehuda S, Synowitz M, et al (2009) Adenosine receptors and cancer. Handb Exp Pharmacol 193:399–441. Wilson CN, Mustafa SJ (ed)

    Google Scholar 

  • Fishman P, Bar-Yehuda S, Liang BT, Jacobson KA (2012) Pharmacological and therapeutic effects of A3 adenosine receptor agonists. Drug Discov Today 17:359–366

    Article  CAS  PubMed  Google Scholar 

  • Gessi S, Varani K, Merighi S et al (2001) Pharmacological and biochemical characterization of A3 adenosine receptors in Jurkat T cells. Br J Pharmacol 134:116–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gessi S, Varani K, Merighi S et al (2002) A(3) adenosine receptors in human neutrophils and promyelocytic HL60 cells: a pharmacological and biochemical study. Mol Pharmacol 61:415–424

    Article  CAS  PubMed  Google Scholar 

  • Gessi S, Cattabriga E, Avitabile A et al (2004) Elevated expression of A3 adenosine receptors in human colorectal cancer is reflected in peripheral blood cells. Clin Cancer Res 10:5895–5901

    Article  CAS  PubMed  Google Scholar 

  • Gessi S, Merighi S, Varani K et al (2007) Adenosine receptors in colon carcinoma tissues and colon tumoral cell lines: focus on the a(3) adenosine subtype. J Cell Physiol 211:826–836

    Article  CAS  PubMed  Google Scholar 

  • Gessi S, Merighi S, Varani K et al (2008) The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117:123–140

    Article  CAS  PubMed  Google Scholar 

  • Gessi S, Fogli E, Sacchetto V et al (2010a) Adenosine modulates HIF-1alpha, VEGF, IL-8, and foam cell formation in a human model of hypoxic foam cells. Arterioscler Thromb Vasc Biol 30:90–97

    Article  CAS  PubMed  Google Scholar 

  • Gessi S, Sacchetto V, Fogli E et al (2010b) Modulation of metalloproteinase-9 in U87MG glioblastoma cells by A3 adenosine receptors. Biochem Pharmacol 79:1483–1495

    Article  CAS  PubMed  Google Scholar 

  • Gessi S, Merighi S, Sacchetto V et al (2011) Adenosine receptors and cancer. Biochim Biophys Acta Biomembr 1808:1400–1412

    Article  CAS  Google Scholar 

  • Harish A, Hohana G, Fishman P et al (2003) A3 adenosine receptor agonist potentiates natural killer cell activity. Int J Oncol 23:1245–1249

    PubMed  CAS  Google Scholar 

  • Hatfield SM, Sitkovsky M (2016) A2A adenosine receptor antagonists to weaken the hypoxia-HIF-1α driven immunosuppression and improve immunotherapies of cancer. Curr Opin Pharmacol 29:90–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofer M, Pospíšil M, Vacek A et al (2006) Effects of adenosine A3 receptor agonist on bone marrow granulocytic system in 5-fluorouracil-treated mice. Eur J Pharmacol 538:163–167

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Apasov S, Koshiba M, Sitkovsky M (1997) Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood 90:1600–1610

    PubMed  CAS  Google Scholar 

  • Iannone R, Miele L, Maiolino P et al (2013) Blockade of A2b adenosine receptor reduces tumor growth and immune suppression mediated by myeloid-derived suppressor cells in a mouse model of melanoma. Neoplasia 15:1400–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson KA, Merighi S, Varani K et al (2017) A3 adenosine receptors as modulators of inflammation: from medicinal chemistry to therapy. Med Res Rev. https://doi.org/10.1002/med21456

  • Jajoo S, Mukherjea D, Watabe K, Ramkumar V (2009) Adenosine a(3) receptor suppresses prostate cancer metastasis by inhibiting NADPH oxidase activity. Neoplasia 11:1132–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jazayeri A, Andrews SP, Marshall FH (2017) Structurally enabled discovery of adenosine A2A receptor antagonists. Chem Rev 117:21–37

    Article  CAS  PubMed  Google Scholar 

  • Jin D, Fan J, Wang L et al (2010) CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res 70:2245–2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoa ND, Montesinos MC, Reiss AB et al (2001) Inflammatory cytokines regulate function and expression of adenosine a(2A) receptors in human monocytic THP-1 cells. J Immunol 167:4026–4032

    Article  CAS  PubMed  Google Scholar 

  • Koshiba M, Kojima H, Huang S et al (1997) Memory of extracellular adenosine A2A purinergic receptor-mediated signaling in murine T cells. J Biol Chem 272:25881–25889

    Article  CAS  PubMed  Google Scholar 

  • Lappas CM, Rieger JM, Linden J (2005a) A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells. J Immunol 174:1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Lappas CM, Sullivan GW, Linden J (2005b) Adenosine a 2A agonists in development for the treatment of inflammation. Expert Opin Investig Drugs 14:797–806

    Article  CAS  PubMed  Google Scholar 

  • Loi S, Pommey S, Haibe-Kains B et al (2013) CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci U S A 110:11091–11096

    Article  PubMed  PubMed Central  Google Scholar 

  • Lukashev D, Ohta A, Sitkovsky M (2007a) Hypoxia-dependent anti-inflammatory pathways in protection of cancerous tissues. Cancer Metastasis Rev 26:273–279

    Article  CAS  PubMed  Google Scholar 

  • Lukashev D, Sitkovsky M, Ohta A (2007b) From ‘Hellstrom paradox–to anti-adenosinergic cancer immunotherapy. Purinergic Signal 3:129–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma S-R, Deng W-W, Liu J-F et al (2017) Blockade of adenosine A2A receptor enhances CD8+ T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma. Mol Cancer 16:99

    Article  PubMed  PubMed Central  Google Scholar 

  • Madi L, Bar-Yehuda S, Barer F et al (2003) A3 adenosine receptor activation in melanoma cells: association between receptor fate and tumor growth inhibition. J Biol Chem 278:42121–42130

    Article  CAS  PubMed  Google Scholar 

  • Madi L, Ochaion A, Rath-Wolfson L et al (2004) The A3 adenosine receptor is highly expressed in tumor versus normal cells: potential target for tumor growth inhibition. Clin Cancer Res 10:4472–4479

    Article  CAS  PubMed  Google Scholar 

  • Maj T, Wang W, Crespo J et al (2017) Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat Immunol 18:1332–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mediavilla-Varela M, Luddy K, Noyes D et al (2013) Antagonism of adenosine A2A receptor expressed by lung adenocarcinoma tumor cells and cancer associated fibroblasts inhibits their growth. Cancer Biol Ther 14:860–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mediavilla-Varela M, Castro J, Chiappori A et al (2017) A novel antagonist of the immune checkpoint protein adenosine A2a receptor restores tumor-infiltrating lymphocyte activity in the context of the tumor microenvironment. Neoplasia 19:530–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merighi S, Varani K, Gessi S et al (2001) Pharmacological and biochemical characterization of adenosine receptors in the human malignant melanoma A375 cell line. Br J Pharmacol 134:1215–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merighi S, Mirandola P, Varani K et al (2003) A glance at adenosine receptors: novel target for antitumor therapy. Pharmacol Ther 100:31–48

    Article  CAS  PubMed  Google Scholar 

  • Merighi S, Benini A, Mirandola P et al (2005) A3 adenosine receptor activation inhibits cell proliferation via phosphatidylinositol 3-kinase/Akt-dependent inhibition of the extracellular signal-regulated kinase 1/2 phosphorylation in A375 human melanoma cells. J Biol Chem 280:19516–19526

    Article  CAS  PubMed  Google Scholar 

  • Merighi S, Benini A, Mirandola P et al (2006) Adenosine modulates vascular endothelial growth factor expression via hypoxia-inducible factor-1 in human glioblastoma cells. Biochem Pharmacol 72:19–31

    Article  CAS  PubMed  Google Scholar 

  • Merimsky O, Bar-Yehuda S, Madi L, Fishman P (2003) Modulation of the A3 adenosine receptor by low agonist concentration induces antitumor and Myelostimulatory effects. Drug Dev 58:386–389

    Article  CAS  Google Scholar 

  • Montinaro A, Forte G, Sorrentino R et al (2012) Adoptive immunotherapy with cl-IB-MECA-treated CD8+ T cells reduces melanoma growth in mice. PLoS One 7:e45401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morello S, Petrella A, Festa M et al (2008) Cl-IB-MECA inhibits human thyroid cancer cell proliferation independently of A3 adenosine receptor activation. Cancer Biol Ther 7:278–284

    Article  CAS  PubMed  Google Scholar 

  • Morello S, Sorrentino R, Porta A et al (2009) Cl-IB-MECA enhances TRAIL-induced apoptosis via the modulation of NF-kappaB signalling pathway in thyroid cancer cells. J Cell Physiol 221:378–386

    Article  CAS  PubMed  Google Scholar 

  • Naganuma M, Wiznerowicz EB, Lappas CM et al (2006) Cutting edge: critical role for A2A adenosine receptors in the T cell-mediated regulation of colitis. J Immunol 177:2765–2769

    Article  CAS  PubMed  Google Scholar 

  • Ohana G, Bar-Yehuda S, Barer F, Fishman P (2001) Differential effect of adenosine on tumor and normal cell growth: focus on the A3 adenosine receptor. J Cell Physiol J Cell Physiol 186:19–2319

    Article  CAS  PubMed  Google Scholar 

  • Ohana G, Bar-Yehuda S, Arich A et al (2003) Inhibition of primary colon carcinoma growth and liver metastasis by the A3 adenosine receptor agonist CF101. Br J Cancer 89:1552–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta A (2016) A metabolic immune checkpoint: adenosine in tumor microenvironment. Front Immunol 7:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920

    Article  CAS  PubMed  Google Scholar 

  • Ohta A, Gorelik E, Prasad SJ et al (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci 103:13132–13137

    Article  CAS  PubMed  Google Scholar 

  • Pardoll D (2002) T cells take aim at cancer. Proc Natl Acad Sci 99:15840–15842

    Article  CAS  PubMed  Google Scholar 

  • Raskovalova T, Lokshin A, Huang X et al (2007) Inhibition of cytokine production and cytotoxic activity of human Antimelanoma specific CD8+ and CD4+ T lymphocytes by adenosine-protein kinase a type I signaling. Cancer Res 67:5949–5956

    Article  CAS  PubMed  Google Scholar 

  • Ryzhov S, Novitskiy SV, Zaynagetdinov R et al (2008) Host a(2B) adenosine receptors promote carcinoma growth. Neoplasia 10:987–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnurr M, Toy T, Shin A et al (2003) Role of adenosine receptors in regulating chemotaxis and cytokine production of plasmacytoid dendritic cells. Blood 103:1391–1397

    Article  CAS  PubMed  Google Scholar 

  • Serra S, Vaisitti T, Audrito V et al (2016) Adenosine signaling mediates hypoxic responses in the chronic lymphocytic leukemia microenvironment. Blood Adv 1:47–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sitkovsky MV (2003) Use of the a(2A) adenosine receptor as a physiological immunosuppressor and to engineer inflammation in vivo. Biochem Pharmacol 65:493–501

    Article  CAS  PubMed  Google Scholar 

  • Sitkovsky MV (2009) T regulatory cells: hypoxia-adenosinergic suppression and re-direction of the immune response. Trends Immunol 30:102–108

    Article  CAS  PubMed  Google Scholar 

  • Sitkovsky MV, Lukashev D, Apasov S et al (2004) Physiological control of immune response and inflammatory tissue damage by hypoxia -inducible factors and adenosine A2A receptors. Annu Rev Immunol 22:657–682

    Article  CAS  PubMed  Google Scholar 

  • Sitkovsky MV, Kjaergaard J, Lukashev D, Ohta A (2008) Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia. Clin Cancer Res 14:5947–5952

    Article  CAS  PubMed  Google Scholar 

  • Stemmer SM, Benjaminov O, Medalia G et al (2013) CF102 for the treatment of hepatocellular carcinoma: a phase I/II, open-label, dose-escalation study. Oncologist 18:25–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Torgersen KM, Vang T, Abrahamsen H et al (2002) Molecular mechanisms for protein kinase A-mediated modulation of immune function. Cell Signal 14:1–9

    Article  CAS  PubMed  Google Scholar 

  • Van Troostenburg A-R, Clark EV, Carey WDH et al (2004) Tolerability, pharmacokinetics and concentration-dependent hemodynamic effects of oral CF101, an A3 adenosine receptor agonist, in healthy young men. Int J Clin Pharmacol Ther 42:534–542

    Article  PubMed  Google Scholar 

  • Varani K, Maniero S, Vincenzi F et al (2011) A3 receptors are overexpressed in pleura from patients with mesothelioma and reduce cell growth via Akt/nuclear factor-κB pathway. Am J Respir Crit Care Med 183:522–530

    Article  CAS  PubMed  Google Scholar 

  • Varani K, Vincenzi F, Targa M et al (2013) The stimulation of a(3) adenosine receptors reduces bone-residing breast cancer in a rat preclinical model. Eur J Cancer 49:482–491

    Article  CAS  PubMed  Google Scholar 

  • Vincenzi F, Targa M, Corciulo C et al (2012) The anti-tumor effect of A3 adenosine receptors is potentiated by pulsed electromagnetic fields in cultured neural cancer cells. PLoS One 7:e39317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan G, Jankins TC, Patrick CG et al (2017) Fluorinated adenosine a 2A receptor antagonists inspired by Preladenant as potential Cancer Immunotherapeutics. Int J Med Chem 2017:1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Merighi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gessi, S., Merighi, S., Borea, P.A., Cohen, S., Fishman, P. (2018). Adenosine Receptors and Current Opportunities to Treat Cancer. In: Borea, P., Varani, K., Gessi, S., Merighi, S., Vincenzi, F. (eds) The Adenosine Receptors. The Receptors, vol 34. Humana Press, Cham. https://doi.org/10.1007/978-3-319-90808-3_23

Download citation

Publish with us

Policies and ethics