Skip to main content

Powder Bed Fusion: The Working Process, Current Applications and Opportunities

  • Chapter
  • First Online:

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 31))

Abstract

Powder bed fusion (PBF) is an umbrella term for three separate three-dimensional (3D) printing technologies; selective laser sintering (SLS), direct metal laser sintering (DMLS) and selective laser melting (SLM). These processes share the same printing procedure where powder particles are selectively fused by a local thermal process generated from a laser in a layer-by-layer manner. However, they differ in the materials used and energy transmitted. Thermoplastic polymers are often employed by SLS whereby a laser superficially connects the powder particles together by a process known as sintering. DMLS and SLM is still a sintering process although metals and powders are most often used. DMLS and SLM are mainly used in the aerospace, maritime and automotive industries although SLS has been successfully introduced into the medical arena for its applications in tissue engineering. In this chapter, we further explore how the SLS technology has proven its amenability in the printing and manufacture of pharmaceuticals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shellabear M, Nyrhilä O. DMLS – Development history and state of the art. 2004.

    Google Scholar 

  2. Beaman JJ, Deckard CR. Selective laser sintering with assisted powder handling. US 4938816 A. 1990.

    Google Scholar 

  3. Geiger M, Vollertsen F. Laser assisted net shape engineering. Proceedings of the LANE ‘94 conference, Erlangen, Oct 12–14, 1994.

    Google Scholar 

  4. Meiners, Wissenbach, Gasser. Selective laser sintering at melting temperature. German patent DE 19649865, filed December 2nd, 1996, Published Feb 12, 1998. 1996.

    Google Scholar 

  5. Kruth JP, Wang X, TL FL. Lasers and materials in selective laser sintering. Assem Autom. 2003;23(4):357–71.

    Article  Google Scholar 

  6. Louvis E, Fox P, Sutcliffe CJ. Selective laser melting of aluminium components. J Mater Process Technol. 2011;211(2):275–84.

    Article  CAS  Google Scholar 

  7. Fina F, Goyanes A, Gaisford S, Basit AW. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm. 2017;529(1):285–93.

    Article  CAS  PubMed  Google Scholar 

  8. Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials. 2003;24(13):2363–78.

    Article  CAS  PubMed  Google Scholar 

  9. Gibson I, Shi D. Material properties and fabrication parameters in selective laser sintering process. Rapid Prototyp J. 1997;3(4):129–36.

    Article  Google Scholar 

  10. Tolochko NK, Laoui T, Khlopkov YV, Mozzaharov SE, Titov VI, Ignatiev MB. Absorptance of powder materials suitable for laser sintering. Rapid Prototyp J. 2000;6(3):155–61.

    Article  Google Scholar 

  11. Formlabs. Fuse 1 Tech Specs. https://formlabs.com/3d-printers/fuse-1-tech-specs/. 2017.

  12. Sinterit. Sinterit Lisa. http://wwwsinterit.com/?gclid=EAIaIQobChMI5vOpvZbU1gIVB40bCh2CzQCUEAAYAiAAEgLLtvD_BwE. 2017.

  13. Sintratec. Sintratec Kit SLS printer. http://sintratec.com/products/kit. 2017.

  14. Leong KF, Chua CK, Gui WS. Verani. Building porous biopolymeric microstructures for controlled drug delivery devices using selective laser sintering. Int J Adv Manuf Technol. 2006;31(5–6):483–9.

    Article  Google Scholar 

  15. Schulze D. Powders and bulk solids: behavior, characterization, storage and flow. Berlin Heidelberg New York: Springer; 2008.

    Google Scholar 

  16. Kruth J-P, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J. 2005;11(1):26–36.

    Article  Google Scholar 

  17. Sing SL, Yeong WY. Direct selective laser sintering and melting of ceramics: a review. Rapid Prototyp J. 2017;23(3):611–23.

    Article  Google Scholar 

  18. Mercelis P, Kruth J-P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J. 2006;12(5):254–65.

    Article  Google Scholar 

  19. Gebhardt A, Schmidt F-M, Hötter J-S, Sokalla W, Sokalla P. Additive manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry. Phys Procedia. 2010;5(Part B):543–9.

    Article  Google Scholar 

  20. Stratasys. Selective laser sintering materials. https://wwwstratasysdirect.com/materials/laser-sintering/. 2017.

  21. Salmoria GV, Lauth VR, Cardenuto MR, Magnago RF. Characterization of PA12/PBT specimens prepared by selective laser sintering. Opt Laser Technol. 2018;98:92–6.

    Article  CAS  Google Scholar 

  22. Salmoria GV, Leite JL, Paggi RA. The microstructural characterization of PA6/PA12 blend specimens fabricated by selective laser sintering. Polym Test. 2009;28(7):746–51.

    Article  CAS  Google Scholar 

  23. Salmoria GV, Vieira FE, Ghizoni GB, Marques MS, Kanis LA. 3D Printing of PCLFluorouracil tablets by selective laser. 2017.

    Google Scholar 

  24. Leong KF, Wiria FE, Chua CK, Li SH. Characterization of a poly-epsilon-caprolactone polymeric drug delivery device built by selective laser sintering. Biomed Mater Eng. 2007;17(3):147–57.

    PubMed  CAS  Google Scholar 

  25. Salmoria GV, Klauss P, Zepon K, Kanis LA, Roesler CRM, Vieira LF. Development of functionally-graded reservoir of PCL/PG by selective laser sintering for drug delivery devices. Virtual Phys Prototyp. 2012;7(2):107–15.

    Article  Google Scholar 

  26. Salmoria GV, Klauss P, Roesler CRM, Kanis LA. Structure and mechanical properties of PCL/PG devices prepared by selective laser sintering for drug delivery applications. 2013 (55607):V01AT20A016.

    Google Scholar 

  27. Chua CK, Leong KF, Tan KH, Wiria FE, Cheah CM. Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. J Mater Sci Mater Med. 2004;15(10):1113–21.

    Article  CAS  PubMed  Google Scholar 

  28. Stratasys. Direct metal laser sintering materials. https://wwwstratasysdirect.com/materials/direct-metal-laser-sintering/. 2017.

  29. Novakov T, Jackson MJ, Robinson GM, Ahmed W, Phoenix DA. Laser sintering of metallic medical materials—a review. Int J Adv Manuf Technol. 2017;93:2723.

    Article  Google Scholar 

  30. Dutta S. Fracture toughness and reliability in high-temperature structural ceramics and composites: prospects and challenges for the 21st century. Bull Mater Sci. 2001;24(2):117–20.

    Article  CAS  Google Scholar 

  31. Bertrand P, Bayle F, Combe C, Goeuriot P, Smurov I. Ceramic components manufacturing by selective laser sintering. Appl Surf Sci. 2007;254(4):989–92.

    Article  CAS  Google Scholar 

  32. Yves-Christian H, Jan W, Wilhelm M, Konrad W, Reinhart P. Net shaped high performance oxide ceramic parts by selective laser melting. Phys Procedia. 2010;5(Part B):587–94.

    Article  CAS  Google Scholar 

  33. Tang Y, Fuh JYH, Loh HT, Wong YS, Lu L. Direct laser sintering of a silica sand. Mater Des. 2003;24(8):623–9.

    Article  CAS  Google Scholar 

  34. 3DSystems. Metal printers. https://uk3dsystems.com/3d-printers#metal-printers. 2017.

  35. Abe F, Osakada K, Shiomi M, Uematsu K, Matsumoto M. The manufacturing of hard tools from metallic powders by selective laser melting. J Mater Process Technol. 2001;111(1):210–3.

    Article  CAS  Google Scholar 

  36. NASA. NASA Tests Limits of 3-D Printing with Powerful Rocket Engine Check. https://www.nasa.gov/press/2013/august/nasa-tests-limits-of-3-d-printing-with-powerful-rocket-engine-check/#WcjOmciGNPZ. 2013.

  37. SLM. Nickel based alloys Turbine blade. https://slm-solutions.com/products/accessories-and-consumables/slm-metal-powder. 2016.

  38. FDA. Technical considerations for additive manufactured devices: food and drug administration; 2017. Available from: https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM499809.pdf.

  39. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26(23):4817–27.

    Article  CAS  Google Scholar 

  40. Partee B, Hollister SJ, Das S. Selective laser sintering process optimization for layered manufacturing of CAPA[sup ®] 6501 Polycaprolactone bone tissue engineering scaffolds. J Manuf Sci Eng. 2006;128(2):531.

    Article  Google Scholar 

  41. Cima LG, Cima MJ. Patent preparation of medical devices by solid free-form fabrication methods. 1996.

    Google Scholar 

  42. Berry E, Brown JM, Connell M, Craven CM, Efford ND, Radjenovic A, et al. Preliminary experience with medical applications of rapid prototyping by selective laser sintering. Med Eng Phys. 1997;19(1):90–6.

    Article  CAS  PubMed  Google Scholar 

  43. Tan KH, Chua CK, Leong KF, Cheah CM, Cheang P, Abu Bakar MS, et al. Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials. 2003;24(18):3115–23.

    Article  CAS  PubMed  Google Scholar 

  44. Tan KH, Chua KC, Leong KF, Cheah CM, Gui WS, Tan WS, Wiria FE. Selective laser sintering of biocompatible polymers for applications in tissue engineering. Biomed Mater Eng. 2005;15(1):11–124.

    Google Scholar 

  45. Eosoly S, Brabazon D, Lohfeld S, Looney L. Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds. Acta Biomater. 2010;6(7):2511–7.

    Article  CAS  PubMed  Google Scholar 

  46. Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS, et al. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 2010;6(6):2028–34.

    Article  CAS  PubMed  Google Scholar 

  47. Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 2010;6(12):4495–505.

    Article  CAS  PubMed  Google Scholar 

  48. Duan B, Cheung WL, Wang M. Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Biofabrication. 2011;3(1):015001.

    Article  CAS  PubMed  Google Scholar 

  49. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9(1):4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leong KF, Phua KKS, Chua CK, Du ZH, Teo KOM. Fabrication of porous polymeric matrix drug delivery devices using the selective laser sintering technique. Proc Inst Mech Eng H J Eng Med. 2001;215(2):191–2.

    Article  CAS  Google Scholar 

  51. Leong K. Characterization of SLS parts for drug delivery devices. Rapid Prototyp J. 2001;7(5):262–8.

    Article  CAS  Google Scholar 

  52. Cheah CM, Leong KF, Chua CK, Low KH, Quek HS. Characterization of microfeatures in selective laser sintered drug delivery devices. Proc Inst Mech Eng H J Eng Med. 2002;216(6):369–83.

    Article  CAS  Google Scholar 

  53. Alhnan MA, Okwuosa TC, Sadia M, Wan K-W, Ahmed W, Arafat B. Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res. 2016;33(8):1817–32.

    Article  CAS  PubMed  Google Scholar 

  54. Salmoria GV, Klauss P, Zepon KM, Kanis LA. The effects of laser energy density and particle size in the selective laser sintering of polycaprolactone/progesterone specimens: morphology and drug release. Int J Adv Manuf Technol. 2012;66(5–8):1113–8.

    Google Scholar 

  55. Salmoria GV, Cardenuto MR, Roesler CRM, Zepon KM, Kanis LA. PCL/ibuprofen implants fabricated by selective laser sintering for orbital repair. Procedia CIRP. 2016;49:188–92.

    Article  Google Scholar 

  56. Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol Sci. 2018;39(5):440–51.

    Article  CAS  PubMed  Google Scholar 

  57. Fina F, Madla CM, Goyanes A, Zhang J, Gaisford S, Basit AW. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm. 2018;541(1-2):101–7.

    Article  CAS  PubMed  Google Scholar 

  58. Fina F, Goyanes A, Madla CM, Awad A, Trenfield SJ, Kuek JM, Patel P, Gaisford S, Basit AW. 3D printing of drug-loaded gyroid lattices using selective laser sintering. Int J Pharm. 2018; https://doi.org/10.1016/j.ijpharm.2018.05.044.

  59. Lepowsky E, Tasoglu S. 3D printing for drug manufacturing: a perspective on the future of pharmaceuticals. Int J Bioprint. 2018;4(1):119.

    Article  Google Scholar 

  60. Awad A, Trenfield SJ, Gaisford S, Basit AW. 3D printed medicines: A new branch of digital healthcare. 2018;548(1):586–596.

    Google Scholar 

  61. Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today. 2018; https://doi.org/10.1016/j.drudis.2018.05.025.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Fina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fina, F., Gaisford, S., Basit, A.W. (2018). Powder Bed Fusion: The Working Process, Current Applications and Opportunities. In: Basit, A., Gaisford, S. (eds) 3D Printing of Pharmaceuticals. AAPS Advances in the Pharmaceutical Sciences Series, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-90755-0_5

Download citation

Publish with us

Policies and ethics