Skip to main content

Regulatory Perspectives on 3D Printing in Pharmaceuticals

  • Chapter
  • First Online:
3D Printing of Pharmaceuticals

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 31))

Abstract

The genomic revolution and the age of personalized medicine has exponentially increased in interest and understanding since its introduction in the last decade. Embracing innovation, the United States Food and Drug Administration (FDA) approved the first three-dimensional (3D) printed drug product and thus, has set the benchmark for an industrial revolution in pharmaceutical manufacture. Regulatory standards, however, require each product of each batch to be within specifications with respect to purity, impurities and quality. The regulatory environment of individual countries, however, differ in terms of manufacturing, distribution and compounding of drug products and thus, need to be fundamentally considered for on-demand and industrial pharmaceutical 3D printing. In the past, it would have seemed like science fiction to design and produce our medicines with 3D printing technology, but it is now certainly becoming reality that will only grow further. This chapter aims to discuss the current regulatory environment for 3D printing mass production and the regulatory gaps and challenges that need to be acknowledged to advance the modern manufacture of medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Center for Drug Evaluation and Research

  2. 2.

    Center for Devices and Radiological Health

  3. 3.

    Center for Biologics Evaluation and Research

References

  1. United States Food and Drug Administration. Highlights of prescribing information – Spritam. 2015. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/207958s000lbl.pdf.

  2. Norman J, Madurawe RD, Moore CMV, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D printed drug products. Adv Drug Deliv Rev. 2017;108:39–50.

    Article  CAS  PubMed  Google Scholar 

  3. Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol Sci. 2018;39(5):440–5.

    Article  CAS  PubMed  Google Scholar 

  4. Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today. 2018; https://doi.org/10.1016/j.drudis.2018.05.025.

  5. Prima MD, Coburn J, Hwang D, Kelly J, Khairuzzaman A, Ricles L. Additively manufactured medical products – the FDA perspective. 3D Print Med. 2016;2:1.

    Article  PubMed  PubMed Central  Google Scholar 

  6. United States Government Accountability Office. 3D printing: opportunities, challenges, and policy implications of additive manufacturing. 2015. Available from: http://www.gao.gov/assets/680/670960.pdf.

  7. Chhaya MP, Poh PS, Balmayor ER, van Griensven M, Schantz JT, Hutmacher DW. Additive manufacturing in biomedical sciences and the need for definitions and norms. Expert Rev Med Devices. 2015;12(5):537–43.

    Article  CAS  PubMed  Google Scholar 

  8. International Standards Organization. ISO/ASTM 52900 Additive manufacturing – General principles – Terminology. [under development] Available from: http://www.iso.org/iso/catalogue_detail.htm?csnumber=69669.

  9. Prasad LM, Smyth H. 3D printing technologies for drug delivery: a review. Drug Dev Ind Pharm. 2016;42(7):1019–31.

    Article  CAS  PubMed  Google Scholar 

  10. Yu DG, Yang XL, Huang WD, Liu J, Wang YG, Xu H. Tablets with material gradients fabricated by three-dimensional printing. J Pharm Sci. 2007;96(9):2446–56.

    Article  CAS  PubMed  Google Scholar 

  11. Alhijjaj M, Belton P, Qi S. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersion prepared via fused deposition modeling (FDM) 3D printing. Eu J Pharm Biopharm. 2016;108:111–25.

    Article  CAS  Google Scholar 

  12. Wang J, Goyanes A, Gaisford S, Basit AW. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. 2016;503:207–12.

    Article  CAS  PubMed  Google Scholar 

  13. Goyanes A, Martinez PR, Buanz A, Basit A, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494:657–63.

    Article  CAS  PubMed  Google Scholar 

  14. Okwuosa TC, Pereira BC, Arafat B, Cieszynska M, Isreb A, Alhnan MA. Fabricating a Shell-Core delayed release tablet using dual FDM 3D printing for patient-centred therapy. Pharm Res. 2017;34:427–37.

    Article  CAS  PubMed  Google Scholar 

  15. Acosta-VĂ©lez GF, Wu BM. 3D pharming: direct printing of personalized pharmaceutical tablets. Pol Sci. 2016;1:2.

    Google Scholar 

  16. Goyanes A, Wang J, Buanz A, Martinez-Pacheco R, Telford R, Gaisford S, et al. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol Pharm. 2015;12(11):4077–84.

    Article  CAS  PubMed  Google Scholar 

  17. Yi HG, Cho YJ, Kang KS, Hong JM, Pati RG, Park MN, et al. A 3D printed local drug delivery patch for pancreatic cancer growth suppression. J Control Release. 2016;238:231–41.

    Article  CAS  PubMed  Google Scholar 

  18. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm. 2015;494(2):643–50.

    Article  CAS  PubMed  Google Scholar 

  19. Katstra WE, Palazzolo RD, Rowe CW, Giritlioglu B, Teung P, Cima MJ. Oral dosage forms fabricated by three dimensional printing. J Control Release. 2000;66(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  20. Sun Y, Soh S. Printing tablets with fully customizable release profiles for personalized medicine. Adv Mater. 2015;27(47):7847–53.

    Article  CAS  PubMed  Google Scholar 

  21. Wu BM, Borland SW, Giordano RA, Cima LG, Sachs EM, Cima MJ. Solid free-form fabrication of drug delivery devices. J Control Release. 1996;40(1–2):77–87.

    Article  CAS  Google Scholar 

  22. Vogel BJ. Intellectual property and additive manufacturing/3D printing: strategies and challenges of applying traditional IP Laws to a transformative technology. Minn J L Sci Tech. 2016;17(2):880–906.

    Google Scholar 

  23. Beck RCR, Chaves PS, Goyanes A, Vukosavljevic B, Buanz A, Windbergs A, et al. 3D printed tablets loaded with polymeric nanocapsules: an innovative approach to produce customized drug delivery systems. Int J Pharm. 2017;528(1-2):268–79.

    Article  CAS  PubMed  Google Scholar 

  24. Alhnan MA, Okwuosa TC, Sadia M, Wan KW, Ahmed W, Arafat B. Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res. 2016;33(8):1817–32.

    Article  CAS  PubMed  Google Scholar 

  25. Fina F, Goyanes A, Gaisford S, Basit AW. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm. 2017;529(1-2):285–93.

    Article  CAS  PubMed  Google Scholar 

  26. Fina F, Madla CM, Goyanes A, Zhang J, Gaisford S, Basit AW. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm. 2018;541(1-2):101–7.

    Article  CAS  PubMed  Google Scholar 

  27. Fina F, Goyanes A, Madla CM, Awad A, Trenfield SJ, Kuek JM, et al. 3D printing of drug-loaded gyroid lattices using selective laser sintering. Int J Pharm. 2018; https://doi.org/10.1016/j.ijpharm.2018.05.044.

  28. Genina N, Boetker JP, Colombo S, Harmankaya N, Rantanen J, Bohr A. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: from drug product design to in vivo testing. J Control Release. 2017;268:40–8.

    Article  CAS  PubMed  Google Scholar 

  29. Gioumouxouzis CI, Katsamenis OL, Bouropoulos N, Fatouros DG. 3D printed oral solid dosage forms containing hydrochlorothiazide for controlled drug delivery. J Drug Deliv Sci Technol. 2017;40:164–71.

    Article  CAS  Google Scholar 

  30. Goyanes A, Chang H, Sedough D, Hatton GB, Wang J, Buanz A, et al. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm. 2015;496(2):414–20.

    Article  CAS  PubMed  Google Scholar 

  31. Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release. 2016;234:41–8.

    Article  CAS  PubMed  Google Scholar 

  32. Goyanes A, Kobayashi M, Martínez-Pacheco R, Gaisford S, Basit AW. Fused-filament 3D printing of drug products: microstructure analysis and drug release characteristics of PVA-based caplets. Int J Pharm. 2016;514(1):290–5.

    Article  CAS  PubMed  Google Scholar 

  33. Goyanes A, Fina F, Martorana A, Sedough D, Gaisford S, Basit AW. Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. Int J Pharm. 2017;527(1-2):21–30.

    Article  CAS  PubMed  Google Scholar 

  34. Goyanes A, Scarpa M, Kamlow M, Gaisford S, Basit AW, Orlu M. Patient acceptability of 3D printed medicines. Int J Pharm. 2017;530(1-2):71–8.

    Article  CAS  PubMed  Google Scholar 

  35. Goyanes A, FernĂ¡ndez-Ferreiro A, Majeed A, Gomez-Lado N, Awad A, Luaces-RodrĂ­guez A, et al. PET/CT imaging of 3D printed devices in the gastrointestinal tract of rodents. Int J Pharm. 2018;536(1):158–64.

    Article  CAS  PubMed  Google Scholar 

  36. Awad A, Trenfield SJ, Gaisford S, Basit AW. 3D printed medicines: A new branch of digital healthcare. Int J Pharm. 2018;548(1):586–96.

    Google Scholar 

  37. Goyanes A, Buanz AB, Hatton GB, Gaisford S, Basit AW. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 2015;89:157–62.

    Google Scholar 

  38. Melocchi A, Parietti F, Maroni A, Foppoli A, Gazzaniga A, Zema L. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm. 2016;509(1-2):255–63.

    Article  CAS  PubMed  Google Scholar 

  39. Okwuosa TC, Stefaniak S, Arafat B, Isreb A, Wan KW, Alhnan MA. A lower temperature FDM 3D printing for the manufacture of patient-specific immediate release tablets. Pharm Res. 2016;33(11):2704–12.

    Article  CAS  PubMed  Google Scholar 

  40. Muwaffak Z, Goyanes A, Clark V, Basit AW, Hilton ST, Gaisford S. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm. 2017;527(1–2):161–70.

    Google Scholar 

  41. Sadia M, Sośnicka A, Arafat B, Isreb A, Ahmed W, Kelarakis A, et al. Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Int J Pharm. 2016;513(1-2):659–68.

    Article  CAS  PubMed  Google Scholar 

  42. Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci. 2015;68:11–7.

    Article  CAS  PubMed  Google Scholar 

  43. Solanki NG, Tahsin M, Shah AV, Serajuddin ATM. Formulation of 3D printed tablet for rapid drug release by fused deposition modeling: screening polymers for drug release, drug-polymer miscibility and printability. J Pharm Sci. 2018;107(1):390–401.

    Article  CAS  PubMed  Google Scholar 

  44. Goyanes A, Buanz AB, Basit AW, Gaisford S. Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm. 2014;476(1-2):88–92.

    Google Scholar 

  45. Kollamaram G, Croker DM, Walker GM, Goyanes A, Basit AW, Gaisford S. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Int J Pharm. 2018;545(1-2):144–52.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang J, Yang W, Vo AW, Feng X, Ye X, Kim DW, Repka MA. Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: structure and drug release correlation. Carbohydr Polym 2017;177:49-57.

    Google Scholar 

  47. Martinez PR, Goyanes A, Basit AW, Gaisford S. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int J Pharm. 2017;532:313–7. https://doi.org/10.1016/j.ijpharm.2017.09.003.

    Article  PubMed  CAS  Google Scholar 

  48. Martinez PR, Goyanes A, Basit AW, Gaisford S. Influence of geometry on the drug release profiles of stereolithographic (SLA) 3D printed tablets. AAPS PharmSciTech. 2018; https://doi.org/10.1208/s12249-018-1075-3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akm Khairuzzaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khairuzzaman, A. (2018). Regulatory Perspectives on 3D Printing in Pharmaceuticals. In: Basit, A., Gaisford, S. (eds) 3D Printing of Pharmaceuticals. AAPS Advances in the Pharmaceutical Sciences Series, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-90755-0_11

Download citation

Publish with us

Policies and ethics