Skip to main content

High Content Screening of Small Molecule Modulators Targeting Heat Shock Response Pathway

  • Chapter
  • First Online:
Heat Shock Proteins and Stress

Part of the book series: Heat Shock Proteins ((HESP,volume 15))

Abstract

Phenotypic high content screening (HCS) has resurged in recent years as an important platform in the drug discovery paradigm, particularly to address the serious challenges in the current target based approaches. Using the highly conserved heat shock response (HSR) pathway as a therapeutic intervention point, we established a cell based, high throughput, multiplexing, and disease relevant phenotypic screening platform for small molecule HSF1 modulators in cancer and neurodegenerative diseases. In this chapter, the authors reviewed their systematic design of methodology and workflow in detail, including the characterization of cellular phenotypic changes, image analysis and quantification, assay development and automation, screening operation and quality control, counter-screen and lead optimization, target identification and mechanism of action study. Selected compounds from the phenotypic screening, including novel HSF1 activators and HSF1 inhibitors, were discussed in regard to their chemical structures, therapeutic effects, and cytotoxicity for potential drug development. The authors also addressed the uncertainties and risks in target deconvolution, which still remains to be the most difficult hurdle in phenotypic screening. Recent HCS advances in tissues, organs and whole organisms, such as 3D tissue imaging, organ-on-a chip, IPS derived cell models, relevant animal models, etc., may bring an effective solution for delivering target-specific, first-in-class drugs in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alastalo TP, Hellesuo M, Sandqvist A, Hietakangas V, Kallio M, Sistonen L (2003) Formation of nuclear stress granules involves HSF2 and coincides with the nucleolar localization of Hsp70. J Cell Sci 116(Pt 17):3557–3570

    Article  CAS  Google Scholar 

  • Anckar J, Sistonen L (2011) Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80:1089–1115

    Article  CAS  Google Scholar 

  • Au Q, Kanchanastit P, Barber JR, Ng SC, Zhang B (2008) High-content image-based screening for small-molecule chaperone amplifiers in heat shock. J Biomol Screen 13(10):953–959

    Article  CAS  Google Scholar 

  • Au Q, Zhang Y, Barber JR, Ng SC, Zhang B (2009) Identification of inhibitors of HSF1 functional activity by high-content target-based screening. J Biomol Screen 14(10):1165–1175

    Article  CAS  Google Scholar 

  • Avior Y, Sagi I, Benvenisty N (2016) Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol 17(3):170–182

    Article  CAS  Google Scholar 

  • Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8):760–772

    Article  CAS  Google Scholar 

  • Bilgin CC, Fontenay G, Cheng Q, Chang H, Han J, Parvin B (2016) BioSig3D: high content screening of three-dimensional cell culture models. PLoS One 11(3):e0148379

    Article  Google Scholar 

  • Boutros M, Heigwer F, Laufer C (2015) Microscopy-based high-content screening. Cell 163(6):1314–1325

    Article  CAS  Google Scholar 

  • Calderwood SK, Murshid A (2017) Molecular chaperone accumulation in cancer and decrease in Alzheimer's disease: the potential roles of HSF1. Front Neurosci 11:192

    Article  Google Scholar 

  • Cheeseman MD, Chessum NE, Rye CS, Pasqua AE, Tucker MJ, Wilding B, Evans LE, Lepri S, Richards M, Sharp SY, Ali S, Rowlands M, O'Fee L, Miah A, Hayes A, Henley AT, Powers M, Te Poele R, De Billy E, Pellegrino L, Raynaud F, Burke R, van Montfort RL, Eccles SA, Workman P, Jones K (2017) Discovery of a chemical probe Bisamide (CCT251236): an orally bioavailable efficacious Pirin ligand from a heat shock transcription factor 1 (HSF1) phenotypic screen. J Med Chem 60(1):180–201

    Article  CAS  Google Scholar 

  • Cher C, Tremblay MH, Barber JR, Ng SC, Zhang B (2010) Identification of chaulmoogric acid as a small molecule activator of protein phosphatase 5. Appl Biochem Biotechnol 160(5):1450–1459

    Article  CAS  Google Scholar 

  • Chessel A (2017) An overview of data science uses in bioimage informatics. Methods 115:110–118

    Article  CAS  Google Scholar 

  • Cotto J, Fox S, Morimoto R (1997) HSF1 granules: a novel stress-induced nuclear compartment of human cells. J Cell Sci 110(Pt 23):2925–2934

    CAS  PubMed  Google Scholar 

  • Dai C, Whitesell L, Rogers AB, Lindquist S (2007) Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130(6):1005–1018

    Article  CAS  Google Scholar 

  • Daugaard M, Rohde M, Jäättelä M (2007) The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett 581(19):3702–3710

    Article  CAS  Google Scholar 

  • Dayalan NS, Dinkova-Kostova AT (2017) Regulation of the mammalian heat shock factor 1. FEBS J 284(11):1606–1627

    Article  Google Scholar 

  • De Thonel A, Mezger V, Garrido C (2011) Implication of heat shock factors in tumorigenesis: therapeutical potential. Cancers (Basel) 3(1):1158–1181

    Article  Google Scholar 

  • Denegri M, Moralli D, Rocchi M, Biggiogera M, Raimondi E, Cobianchi F, De Carli L, Riva S, Biamonti G (2002) Human chromosomes 9, 12, and 15 contain the nucleation sites of stress- induced nuclear bodies. Mol Biol Cell 13(6):2069–2079

    Article  CAS  Google Scholar 

  • Donato MT, Gómez-Lechón MJ, Tolosa L (2017) Using high-content screening technology for studying drug-induced hepatotoxicity in preclinical studies. Expert Opin Drug Discovery 12(2):201–211

    Article  CAS  Google Scholar 

  • Eder J, Sedrani R, Wiesmann C (2014) The discovery of first-in-class drugs: origins and evolution. Nat Rev Drug Discov 13:577–587

    Article  CAS  Google Scholar 

  • Fellmann C, Gowen BG, Lin PC, Doudna JA, Corn JE (2017) Cornerstones of CRISPR-Cas in drug discovery and therapy. Nat Rev Drug Discov 16:89–100

    Article  CAS  Google Scholar 

  • Fetz V, Prochnow H, Bronstrup M, Sasse F (2016) Target identification by image analysis. Nat Prod Rep 33:655–667

    Article  CAS  Google Scholar 

  • Gao M, Nettles RE, Belema M, Snyder LB, Nguyen VN, Fridell RA, Serrano-Wu MH, Langley DR, Sun JH, O’Boyle DR 2nd, Lemm JA, Wang C, Knipe JO, Chien C, Colonno RJ, Grasela DM, Meanwell NA, Hamann LG (2010) Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature 465(7294):96–100

    Article  CAS  Google Scholar 

  • Gomez-Pastor R, Burchfiel ET, Thiele DJ (2017) Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol Aug 30. https://doi.org/10.1038/nrm.2017.73 [Epub ahead of print]

    Article  Google Scholar 

  • Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295

    Article  CAS  Google Scholar 

  • Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14:111–129

    Article  CAS  Google Scholar 

  • Horvath P, Aulner N, Bickle M, Davies AM, Nery ED, Ebner D, Montoya MC, Östling P, Pietiäinen V, Price LS, Shorte SL, Turcatti G, von Schantz C, Carragher NO (2016) Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov 15(11):751–769

    Article  CAS  Google Scholar 

  • Jolly C, Usson Y, Morimoto RI (1999) Rapid and reversible relocalization of heat shock factor 1 within seconds to nuclear stress granules. Proc Natl Acad Sci U S A 96(12):6769–6774

    Article  CAS  Google Scholar 

  • Jolly C, Konecny L, Grady DL, Kutskova YA, Cotto JJ, Morimoto RI, Vourc'h C (2002) In vivo binding of active heat shock transcription factor 1 to human chromosome 9 heterochromatin during stress. J Cell Biol 156(5):775–781

    Article  CAS  Google Scholar 

  • Jolly C, Metz A, Govin J, Vigneron M, Turner BM, Khochbin S, Vourc'h C (2004) Stress-induced transcription of satellite III repeats. J Cell Biol 164(1):25–33

    Article  CAS  Google Scholar 

  • Jones LH, Bunnage ME (2017) Applications of chemogenomic library screening in drug discovery. Nat Rev Drug Discov 16:285–296

    Article  CAS  Google Scholar 

  • Khurana V, Tardiff DF, Chung CY, Lindquist S (2015) Toward stem cell-based phenotypic screens for neurodegenerative diseases. Nat Rev Neurol 11(6):339–350

    Article  CAS  Google Scholar 

  • Li L, Zhou Q, Voss TC, Quick KL, LaBarbera DV (2016) High-throughput imaging: Focusing in on drug discovery in 3D. Methods 96:97–102

    Article  CAS  Google Scholar 

  • Lindquist SL, Kelly JW (2011) Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Cold Spring Harb Perspect Biol 3(12):a004507

    Article  Google Scholar 

  • Liu C, Su J, Yang F, Wei K, Ma J, Zhou X (2015) Compound signature detection on LINCS L1000 big data. Mol BioSyst 11(3):714–722

    Article  CAS  Google Scholar 

  • Mattiazzi UM, Styles EB, Verster AJ, Friesen H, Boone C, Andrews BJ (2016) High-content screening for quantitative cell biology. Trends Cell Biol 26(8):598–611

    Article  Google Scholar 

  • Moffat JG, Rudolph J, Bailey D (2014) Phenotypic screening in cancer drug discovery - past, present and future. Nat Rev Drug Discov 13:588–602

    Article  CAS  Google Scholar 

  • Moffat JG, Vincent F, Lee JA, Eder J, Prunotto M (2017) Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat Rev Drug Discov 16(8):531–543

    Article  CAS  Google Scholar 

  • Moore JD (2015) The impact of CRISPR–Cas9 on target identification and validation. (2015). Drug Discov Today 20:450–457

    Article  CAS  Google Scholar 

  • Moutsatsos IK, Parker CN (2016) Recent advances in quantitative high throughput and high content data analysis. Expert Opin Drug Discovery 11(4):415–423

    Article  CAS  Google Scholar 

  • Neef DW, Jaeger AM, Thiele DJ (2011) Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat Rev Drug Discov 10(12):930–944

    Article  CAS  Google Scholar 

  • Neudegger T, Verghese J, Hayer-Hartl M, Hartl FU, Bracher A (2016) Structure of human heat-.shock transcription factor 1 in complex with DNA. Nat Struct Mol Biol 23(2):140–146

    Article  CAS  Google Scholar 

  • Nijman SM (2015) Functional genomics to uncover drug mechanism of action. Nat Chem Biol 11:942–948

    Article  CAS  Google Scholar 

  • Nyström A, Thriene K, Mittapalli V, Kern JS, Kiritsi D, Dengjel J, Bruckner-Tuderman L (2015) Losartan ameliorates dystrophic epidermolysis bullosa and uncovers new disease mechanisms. EMBO Mol Med 7(9):1211–1228

    Article  Google Scholar 

  • Pegoraro G, Misteli T (2017) High-throughput imaging for the discovery of cellular mechanisms of disease. Trends Genet 33(9):604–615

    Article  CAS  Google Scholar 

  • Persson M, Hornberg JJ (2016) Advances in predictive toxicology for discovery safety through high content screening. Chem Res Toxicol 29(12):1998–2007

    Article  CAS  Google Scholar 

  • Petersen DN, Hawkins J, Ruangsiriluk W, Stevens KA, Maguire BA, O’Connell TN, Rocke BN, Boehm M, Ruggeri RB, Rolph T, Hepworth D, Loria PM, Carpino PA (2016) A small-molecule anti-secretagogue of PCSK9 targets the 80S ribosome to inhibit PCSK9 protein translation. Cell Chem Biol 23(11):1362–1371

    Article  CAS  Google Scholar 

  • Phukan J (2010) Arimoclomol, a coinducer of heat shock proteins for the potential treatment of amyotrophic lateral sclerosis. IDrugs 13(7):482–496

    Google Scholar 

  • Rye CS, Chessum NE, Lamont S, Pike KG, Faulder P, Demeritt J, Kemmitt P, Tucker J, Zani L, Cheeseman MD, Isaac R, Goodwin L, Boros J, Raynaud F, Hayes A, Henley AT, de Billy E, Lynch CJ, Sharp SY, Te Poele R, Fee LO, Foote KM, Green S, Workman P, Jones K (2016) Discovery of 4,6-disubstituted pyrimidines as potent inhibitors of the heat shock factor 1 (HSF1) stress pathway and CDK9. Medchemcomm 7(8):1580–1586

    Article  CAS  Google Scholar 

  • Saibil H (2013) Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 14(10):630–642

    Article  CAS  Google Scholar 

  • Sandqvist A, Sistonen L (2004) Nuclear stress granules: the awakening of a sleeping beauty? J Cell Biol 164(1):15–17

    Article  CAS  Google Scholar 

  • Santagata S, Xu YM, Wijeratne EM, Kontnik R, Rooney C, Perley CC, Kwon H, Clardy J, Kesari S, Whitesell L, Lindquist S, Gunatilaka AA (2012) Using the heat-shock response to discover anticancer compounds that target protein homeostasis. ACS Chem Biol 7(2):340–349

    Article  CAS  Google Scholar 

  • Santagata S, Mendillo ML, Tang YC, Subramanian A, Perley CC, Roche SP, Wong B, Narayan R, Kwon H, Koeva M, Amon A, Golub TR, Porco JA Jr, Whitesell L, Lindquist S (2013) Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state. Science 341(6143):1238303

    Article  Google Scholar 

  • Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-Lazikani B, Hersey A, Oprea TI, Overington JP (2017) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 6(1):19–34

    Article  Google Scholar 

  • Sawyers CL (2005) Making progress through molecular attacks on cancer. Cold Spring Harb Symp Quant Biol 70:479–482

    Article  CAS  Google Scholar 

  • Scannell JW, Bosley J (2016) When quality beats quantity: decision theory, drug discovery, and the reproducibility crisis. PLoS One 11(2):e0147215

    Article  Google Scholar 

  • Schenone M, Dančík V, Wagner BK, Clemons PA (2013) Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 9(4):232–240

    Article  CAS  Google Scholar 

  • Schirle M, Jenkins JL (2016) Identifying compound efficacy targets in phenotypic drug discovery. Drug Discov Today 21:82–89

    Article  CAS  Google Scholar 

  • Shi Y, Inoue H, Wu JC, Yamanaka S (2017) Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 16:115–130

    Article  CAS  Google Scholar 

  • Swinney DC, Anthony J (2011) How were new medicines discovered? Nat Rev Drug Discov 10:507–519

    Article  CAS  Google Scholar 

  • Thomas N (2010) High-content screening: a decade of evolution. J Biomol Screen 15(1):1–9

    Article  Google Scholar 

  • Vilaboa N, Boré A, Martin-Saavedra F, Bayford M, Winfield N, Firth-Clark S, Kirton SB, Voellmy R (2017) New inhibitor targeting human transcription factor HSF1: effects on the heat shock response and tumor cell survival. Nucleic Acids Res 45(10):5797–5817

    Article  CAS  Google Scholar 

  • Vydra N, Toma A, Widlak W (2014) Pleiotropic role of HSF1 in neoplastic transformation. Curr Cancer Drug Targets 14(2):144–155

    Article  CAS  Google Scholar 

  • Wagner BK (2016) The resurgence of phenotypic screening in drug discovery and development. Expert Opin Drug Discovery 11(2):121–125

    Article  Google Scholar 

  • Wagner BK, Schreiber SL (2016) The power of sophisticated phenotypic screening and modern mechanism-of-action methods. Cell Chem Biol 23:3–9

    Article  CAS  Google Scholar 

  • Wassermann AM, Lounkine E, Hoepfner D, Le Goff G, King FJ, Studer C, Peltier JM, Grippo ML, Prindle V, Tao J, Schuffenhauer A, Wallace IM, Chen S, Krastel P, Cobos-Correa A, Parker CN, Davies JW, Glick M (2015) Dark chemical matter as a promising starting point for drug lead discovery. Nat Chem Biol 11(12):958–966

    Article  CAS  Google Scholar 

  • Westerheide SD, Bosman JD, Mbadugha BN, Kawahara TL, Matsumoto G, Kim S, Gu W, Devlin JP, Silverman RB, Morimoto RI (2004) Celastrols as inducers of the heat shock response and cytoprotection. J Biol Chem 279(53):56,053–56,060

    Article  CAS  Google Scholar 

  • Westerheide SD, Kawahara TL, Orton K, Morimoto RI (2006) Triptolide, an inhibitor of the human heat shock response that enhances stress-induced cell death. J Biol Chem 281(14):9616–9622

    Article  CAS  Google Scholar 

  • Westerheide SD, Anckar J, Stevens SM Jr, Sistonen L, Morimoto RI (2009) Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323(5917):1063–1066

    Article  CAS  Google Scholar 

  • Workman P (2005) Drugging the cancer kinome: progress and challenges in developing personalized molecular cancer therapeutics. Cold Spring Harb Symp Quant Biol 70:499–515

    Article  CAS  Google Scholar 

  • Xu K, Sun X, Erokwu BO, Cernak I, Lamanna JC (2011) A heat-shock protein co-inducer treatment improves behavioral performance in rats exposed to hypoxia. Adv Exp Med Biol 701:313–318

    Article  CAS  Google Scholar 

  • Yoon IS, Au Q, Barber JR, Ng SC, Zhang B (2010) Development of a high-throughput screening assay for cytoprotective agents in rotenone-induced cell death. Anal Biochem 407(2):205–210

    Article  CAS  Google Scholar 

  • Yoon YJ, Kim JA, Shin KD, Shin DS, Han YM, Lee YJ, Lee JS, Kwon BM, Han DC (2011) KRIBB11 inhibits HSP70 synthesis through inhibition of heat shock factor 1 function by impairing the recruitment of positive transcription elongation factor b to the hsp70 promoter. J Biol Chem 286(3):1737–1747

    Article  CAS  Google Scholar 

  • Zeng XC, Bhasin S, Wu X, Lee JG, Maffi S, Nichols CJ, Lee KJ, Taylor JP, Greene LE, Eisenberg E (2004) Hsp70 dynamics in vivo: effect of heat shock and protein aggregation. J Cell Sci 117(Pt 21):4991–5000

    Article  CAS  Google Scholar 

  • Zhang D, Zhang B (2016) Selective killing of cancer cells by small molecules targeting heat shock stress response. Biochem Biophys Res Commun 478(4):1509–1514

    Article  CAS  Google Scholar 

  • Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2):67–73

    Article  CAS  Google Scholar 

  • Zhang B, Gu X, Uppalapati U, Ashwell MA, Leggett DS, Li CJ (2008) High-content fluorescent-based assay for screening activators of DNA damage checkpoint pathways. J Biomol Screen 13(6):538–543

    Article  CAS  Google Scholar 

  • Zhang B, Au Q, Yoon IS, Tremblay MH, Yip G, Zhou Y, Barber JR, Ng SC (2009a) Identification of small-molecule HSF1 amplifiers by high content screening in protection of cells from stress induced injury. Biochem Biophys Res Commun 390(3):925–930

    Article  CAS  Google Scholar 

  • Zhang Y, Au Q, Zhang M, Barber JR, Ng SC, Zhang B (2009b) Identification of a small molecule SIRT2 inhibitor with selective tumor cytotoxicity. Biochem Biophys Res Commun 386(4):729–733

    Article  CAS  Google Scholar 

  • Zhang W, Bai Y, Wang Y, Xiao W (2016) Polypharmacology in drug discovery: a review from systems pharmacology perspective. Curr Pharm Des 22:3171–3181

    Article  CAS  Google Scholar 

  • Zhou Y, Liu G, Chen J, Reddy PS, Yoon IS, Zhang M, Zhang B (2009) Barber, J.R, Ng, S.C. (2009a) Pyrimido[5,4-e][1,2,4]triazine-5,7(1H,6H)-dione derivatives: their cytoprotection effect from rotenone toxicity and preliminary DMPK properties. Bioorg Med Chem Lett 19(21):6114–6118

    Article  CAS  Google Scholar 

  • Zhou Y, Vu K, Chen Y, Pham J, Brady T, Liu G, Chen J, Nam J, Murali Mohan Reddy PS, Au Q, Yoon IS, Tremblay MH, Yip G, Cher C, Zhang B, Barber JR, Ng SC (2009b) Chloro-oxime derivatives as novel small molecule chaperone amplifiers. Bioorg Med Chem Lett 19(11):3128–3135

    Article  CAS  Google Scholar 

  • Zhou Y, Wei L, Brady TP, Murali Mohan Redddy PS, Nguyen T, Chen J, Au Q, Yoon IS, Yip G, Zhang B, Barber JR, Ng SC (2009c) Pyrimido [5,4-e][1,2,4]triazine-5,7(1H,6H)-dione derivatives as novel small molecule chaperone amplifiers. Bioorg Med Chem Lett 19(15):4303–4307

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the supports received from everyone at Alpine Therapeutics, Inc. Special acknowledgements are given to Dr. Dorothy Wang for her critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, D., Zhang, B. (2018). High Content Screening of Small Molecule Modulators Targeting Heat Shock Response Pathway. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins and Stress. Heat Shock Proteins, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-90725-3_8

Download citation

Publish with us

Policies and ethics