Skip to main content

Kalanchoë

  • Chapter
  • First Online:
Ornamental Crops

Abstract

The Kalanchoë genus comprises mainly succulent plants native to Madagascar and East and South Africa. The most important species in the genus is Kalanchoë blossfeldiana that gave rise to the majority of commercial cultivars. Kalanchoë plants are used as potted plants due to abundant flowering, desired longevity of individual flowers, excellent postharvest performance, and low-care requirements. The genus is also increasingly used as outdoor plants and cut flowers. Nowadays, Kalanchoë is ranked as the second most popular potted plant in Europe with annual turnover of 67 million euros in 2016. The breeding efforts in the genus focused mainly on K. blossfeldiana and started in the 1930s with an objective to develop compact cultivars with diverse flower color. Currently, the improvement of Kalanchoë cultivars is accomplished through intraspecific crossbreeding, interspecific hybridization, and genetic engineering. The modern breeding aims consist of a vast list of traits including morphological characteristics and postproduction longevity while minimizing negative impacts on the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aida R, Shibata M (2002) High frequency of polyploidization in regenerated plants of Kalanchoe blossfeldiana cultivar ‘Tetra Vulcan’. Plant Biotechnol 19:329–335

    Article  CAS  Google Scholar 

  • Akulova-Barlow Z (2009) Kalanchoe: Beginner’s delight, collector’s dream. Cact Succ J 81:268–276

    Article  Google Scholar 

  • Alton J, Pertuit J (1992) Kalanchoe. In: Larson R (ed) Introduction to floriculture. Academic press, New York, pp 429–450

    Google Scholar 

  • Andersen HR, Vinggaard AM, Rasmussen TH, Gjermandsen IM, Bonefeld-Jørgensen EC (2002) Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicol Appl Pharmacol 179:1–12

    Article  CAS  PubMed  Google Scholar 

  • Baldwin JT (1938) Kalanchoe: the genus and its chromosomes. Am J Bot 25:572–580

    Article  Google Scholar 

  • Baldwin J Jr (1949) Hybrid of Kalanchoe daigremontiana and K. verticillata. Bull Torrey Bot Club 1:343–345

    Article  Google Scholar 

  • Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089. https://doi.org/10.1126/science.241.4869.1086

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya A, Kourmpetli S, Davey MR (2010) Practical applications of manipulating plant architecture by regulating gibberellin metabolism. J Plant Growth Regul 29:249–256. https://doi.org/10.1007/s00344-009-9126-3

    Article  CAS  Google Scholar 

  • Blankenship S, Dole J (2003) 1-Methylcyclopropene: a review. Postharvest Biol Technol 28:1–25

    Article  CAS  Google Scholar 

  • Boiteau P, Allorge-Boiteau L (1995) Kalanchoe (Crassulacées) de Madagascar: systématique, écophysiologie et phytochimie. KARTHALA Editions

    Google Scholar 

  • Bovy AG, Angenent GC, Dons HJ, van Altvorst A-C (1999) Heterologous expression of the Arabidopsis etr1-1 allele inhibits the senescence of carnation flowers. Mol Breed 5:301–308

    Article  CAS  Google Scholar 

  • Broertjes C, Leffring L (1972) Mutation breeding of Kalanchoë. Euphytica 21:415–423

    Article  Google Scholar 

  • Carvalho SM, Wuillai SE, Heuvelink E (2006) Combined effects of light and temperature on product quality of Kalanchoe blossfeldiana. Acta Hortic 711:121–126

    Article  Google Scholar 

  • Castelblanque L, García-Sogo B, Pineda B, Moreno V (2010) Efficient plant regeneration from protoplasts of Kalanchoe blossfeldiana via organogenesis. Plant Cell Tissue Organ Cult 100:107–112. https://doi.org/10.1007/s11240-009-9617-8

    Article  Google Scholar 

  • Castro S, Loureiro J, Rodriguez E, Silveira P, Navarro L, Santos C (2007) Evaluation of polysomaty and estimation of genome size in Polygala vayredae and P. calcarea using flow cytometry. Plant Sci 172:1131–1137

    Article  CAS  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544

    Article  CAS  PubMed  Google Scholar 

  • Chernetskyy M (2011) Problems in nomenclature and systematics in the subfamily kalanchoideae (Crassulaceae) over the years. Acta Agrobot 64:67–74

    Article  Google Scholar 

  • Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempe J (1982) Agrobacterium rhizogenes inserts T-DNA into the genome of the host plant root cells. Nature 295:432–434

    Article  CAS  Google Scholar 

  • Christensen B, Müller R (2009) Kalanchoe blossfeldiana Transformed with rol genes exhibits improved postharvest performance and increased ethylene tolerance. Postharvest Biol Technol 51:399–406

    Article  CAS  Google Scholar 

  • Christensen B, Sriskandarajah S, Serek M, Müller R (2008) Transformation of Kalanchoe blossfeldiana with rol-genes is useful in molecular breeding towards compact growth. Plant Cell Rep 27:1485–1495. https://doi.org/10.1007/s00299-008-0575-0

    Article  PubMed  CAS  Google Scholar 

  • Christensen B, Sriskandarajah S, Müller R (2009) Biomass distribution in Kalanchoe blossfeldiana transformed with rol-genes of Agrobacterium rhizogenes. Hortscience 44:1233–1237

    Google Scholar 

  • Christensen B, Sriskandarajah S, Jensen E, Lütken H, Müller R (2010) Transformation with rol genes of Agrobacterium rhizogenes as a strategy to breed compact ornamental plants with improved postharvest quality. Acta Hortic 855:69–75

    Article  CAS  Google Scholar 

  • Coelho L, Kuligowska K, Lütken H, Müller R (2015) Photoperiod and cold night temperature in control of flowering in Kalanchoë. Acta Hortic 1087:129–134. https://doi.org/10.17660/ActaHortic.2015.1087.14

    Article  Google Scholar 

  • CPVO varieties database (2017) http://cpvo.europa.eu. Accessed 12.04.2017

  • Clark DG, Gubrium EK, Barrett JE, Nell TA, Klee HJ (1999) Root formation in ethylene-insensitive plants. Plant Physiol 121:53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullen J, Knees SG, Cubey HS (2011) Crassulaceae. In: Cullen J, Knees SG, Cubey HS (eds) The European garden flora flowering plants: a manual for the identification of plants cultivated in Europe, both out-of-doors and under glass, vol 3. Cambridge University Press, New York, pp 19–94

    Google Scholar 

  • Currey C, Erwin J (2010) Variation among Kalanchoe species in their flowering responses to photoperiod and short-day cycle number. J Hortic Sci Biotechnol 85:350–355

    Article  Google Scholar 

  • Currey C, Erwin J (2011) Photoperiodic flower induction of several Kalanchoe species and ornamental characteristics of the flowering species. Hortic Sci 46:35–40

    Google Scholar 

  • Clevenger D, Barrett J, Klee H, Clark D (2004) Factors affecting seed production in transgenic ethylene-insensitive petunia. J Am Soc Hortic Sci 129:401–406

    CAS  Google Scholar 

  • Descoings B (2003) Kalanchoe. In: Eggli U, Hartmann HEK (eds) Illustrated handbook of succulent plants. Crassulaceae. Springer Verlag, New York, pp 143–181

    Google Scholar 

  • Dilworth WL (1982) Yellow kalanchoe plant. US Patent 4825 P

    Google Scholar 

  • Eeckhaut T, Lakshmanan PS, Deryckere D, Van Bockstaele E, Van Huylenbroeck J (2013) Progress in plant protoplast research. Planta 238:991–1003

    Article  CAS  PubMed  Google Scholar 

  • Eveleens-Clark B, Carvalho S, Heuvelink E (2004) A conceptual dynamic model for external quality in kalanchoe. Acta Hortic 654:263–270

    Article  Google Scholar 

  • FloraHolland (2016) FloraHolland. Facts and figures 2016. http://annualreport.royalfloraholland.com. Accessed 14.07.2017

  • Fridborg I, Kuusk S, Moritz T, Sundberg E (1999) The Arabidopsis dwarf mutant shi exhibits reduced gibberellin responses conferred by overexpression of a new putative zinc finger protein. Plant Cell 11:1019–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gargul J, Mibus H, Serek M (2013) Constitutive overexpression of Nicotiana GA2ox leads to compact phenotypes and delayed flowering in Kalanchoë blossfeldiana and Petunia hybrida. Plant Cell Tissue Organ Cult 115:407–418

    Article  CAS  Google Scholar 

  • Gargul JM, Mibus H, Serek M (2015) Manipulation of MKS1 gene expression affects Kalanchoë blossfeldiana and Petunia hybrida phenotypes. Plant Biotechnol J 13:51–61

    Article  CAS  PubMed  Google Scholar 

  • Gehrig H, Rosicke H, Kluge M (1997) Detection of DNA polymorphisms in the genus Kalanchoe by RAPD-PCR fingerprint and its relationships to infrageneric taxonomic position and ecophysiological photosynthetic behaviour of the species. Plant Sci 125:41–52

    Article  CAS  Google Scholar 

  • Gehrig H, Gaußmann O, Marx H, Schwarzott D, Kluge M (2001) Molecular phylogeny of the genus Kalanchoe (Crassulaceae) inferred from nucleotide sequences of the ITS-1 and ITS-2 regions. Plant Sci 160:827–835

    Article  CAS  PubMed  Google Scholar 

  • González de León S, Herrera I, Guevara R (2016) Mating system, population growth, and management scenario for Kalanchoe pinnata in an invaded seasonally dry tropical forest. Ecol Evol 6:4541–4550

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM (2009) Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci U S A 106:16529–16534. https://doi.org/10.1073/pnas.0908122106

    Article  PubMed  PubMed Central  Google Scholar 

  • Gubrium E, Clevenger D, Clark D, Barrett J, Nell T (2000) Reproduction and horticultural performance of transgenic ethylene- insensitive petunias. J Amer Soc Hort Sci 125:277–281

    Google Scholar 

  • Hansen G, Larribe M, Vaubert D, Tempe J, Biermann BJ, Montoya AL, Chilton MD, Brevet J (1991) Agrobacterium rhizogenes pRi8196 T-DNA: mapping and DNA sequence of functions involved in mannopine synthesis and hairy root differentiation. Proc Natl Acad Sci U S A 88:7763–7767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera I, Nassar J (2009) Reproductive and recruitment traits as indicators of the invasive potential of Kalanchoe daigremontiana (Crassulaceae) and Stapelia gigantea (Apocynaceae) in a Neotropical arid zone. J Arid Environ 73:978–986

    Article  Google Scholar 

  • Hickey M, King C (1988) Kalanchoë blossfeldiana Poelln. In: 100 families of flowering plants, 2nd edn. Cambridge University Press, New York, p 174

    Google Scholar 

  • Høyer L, Nell TA (1995) Plants respond differently to either dynamic or stationary ethylene exposure. VI Int Symp Postharvest Phys Ornamental Plants 405(1995):277–283

    Google Scholar 

  • Huang C-H, Chu C-Y (2012) The flower development and photoperiodism of native Kalanchoe spp. in Taiwan. Sci Hortic 146:59–64

    Article  Google Scholar 

  • Huang C-H, Chu C-Y (2017) Inheritance of leaf and flower morphologies in Kalanchoe spp. Euphytica 213:4

    Article  CAS  Google Scholar 

  • Irwin LT (1976) Kalanchoe plant US Patent 3992 P

    Google Scholar 

  • Izumikawa Y, Takei S, Nakamura I, Mii M (2007) Production and characterization of inter-sectional hybrids between Kalanchoe spathulata and K. laxiflora ( = Bryophyllum crenatum). Euphytica 163:123–130. https://doi.org/10.1007/s10681-007-9619-8

    Article  Google Scholar 

  • Izumikawa Y, Nakamura I, Mii M (2008) Interspecific hybridization between Kalanchoe blossfeldiana and several wild Kalanchoe species with ornamental value. Acta Hortic 743:59–66

    Google Scholar 

  • Jepsen K, Christensen E (2006) Double-type kalanchoe interspecific hybrids. US 7453032 B2

    Google Scholar 

  • Johnson EL (1948) Response of Kalanchoe tubiflora to X-radiation. Plant Physiol 23:544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouanin L, Guerche P, Pamboukdjian N, Tourneur C, Delbart F, Tourneur J (1987) Structure of T-DNA in plants regenerated from roots transformed by Agrobacterium rhizogenes strain A4. Mol Gen Genet 206:387–392

    Article  CAS  Google Scholar 

  • Kalanchoë Growers Holland (2017) http://www.kalanchoe.nl. Accessed 14.07.2017

  • Khan S, Naz S, Ali K, Zaidi S (2006) Direct organogenesis of Kalanchoe tomentosa (Crassulaceae) from shoot-tips. Pak J Bot 38:977

    Google Scholar 

  • Khoury N, White J (1980) Juvenility and response time of kalanchoe cultivars. J Am Soc Hortic Sci 105:724–726

    Google Scholar 

  • Krupa-Malkiewicz M (2010) Influence of chemical mutagens on morphological traits in kalanchoe (Kalanchoe hybrida). Folia Pomeranae Univ Technol Stetin Agric Aliment Piscaria Zootech 279:11–18

    Google Scholar 

  • Kuligowska K, Lütken H, Christensen B, Müller R (2015a) Quantitative and qualitative characterization of novel features of Kalanchoë interspecific hybrids. Euphytica 205:927–940. https://doi.org/10.1007/s10681-015-1441-0

    Article  Google Scholar 

  • Kuligowska K, Lütken H, Christensen B, Skovgaard I, Linde M, Winkelmann T, Müller R (2015b) Evaluation of reproductive barriers contributes to the development of novel interspecific hybrids in the Kalanchoë genus. BMC Plant Biol 15:15. https://doi.org/10.1186/s12870-014-0394-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuligowska K, Lütken H, Müller R (2016) Towards development of new ornamental plants: status and progress in wide hybridization. Planta 244:1–17

    Article  CAS  PubMed  Google Scholar 

  • Laura M, Borghi C, Regis C, Casetti A, Allavena A (2009) Overexpression and silencing of KxhKN5 gene in K x houghtonii. Acta Hortic 836:265–269

    Article  CAS  Google Scholar 

  • Laura M, Borghi C, Regis C, Cassetti A, Allavena A (2013) Ectopic expression of Kxhkn5 in the viviparous species Kalanchoe × Houghtonii induces a novel pattern of epiphyll development. Transgenic Res 22:59–74

    Article  CAS  PubMed  Google Scholar 

  • Leibfried A, To JPC, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175. https://doi.org/10.1038/nature04270

    Article  PubMed  CAS  Google Scholar 

  • Lemcke K, Schmulling T (1998) Gain of function assays identify non-rol genes from Agrobacterium rhizogenes TL-DNA that alter plant morphogenesis or hormone sensitivity. Plant J 15:423–433

    Article  CAS  PubMed  Google Scholar 

  • Leonard R, Nell T (1998) Effects of production and postproduction factors on longevity and quality of Kalanchoe. Acta Hortic 518:121–124

    Google Scholar 

  • LPlants (1975) Kalanchoe plant US Patent 3821 P

    Google Scholar 

  • Lütken H, Jensen LS, Topp SH, Mibus H, Müller R, Rasmussen SK (2010) Production of compact plants by overexpression of AtSHI in the ornamental Kalanchoë. Plant Biotechnol J 8:211–222

    Article  CAS  PubMed  Google Scholar 

  • Lütken H, Laura M, Borghi C, Orgaard M, Allavena A, Rasmussen SK (2011) Expression of KxhKN4 and KxhKN5 genes in Kalanchoe blossfeldiana ‘Molly’ results in novel compact plant phenotypes: towards a cisgenesis alternative to growth retardants. Plant Cell Rep 30:2267–2279. https://doi.org/10.1007/s00299-011-1132-9

    Article  PubMed  CAS  Google Scholar 

  • Lütken H, Clarke JL, Muller R (2012a) Genetic engineering and sustainable production of ornamentals: current status and future directions. Plant Cell Rep 31:1141–1157. https://doi.org/10.1007/s00299-012-1265-5

    Article  PubMed  CAS  Google Scholar 

  • Lütken H, Jensen EB, Wallstrom S, Müller R, Christensen B (2012b) Development and evaluation of a non-GMO breeding technique exemplified by Kalanchoë. Acta Hortic 961:51–58

    Article  Google Scholar 

  • Lütken H, Wallström SV, Jensen EB, Christensen B, Müller R (2012c) Inheritance of rol-genes from Agrobacterium rhizogenes through two generations in Kalanchoë. Euphytica 188:397–407

    Article  CAS  Google Scholar 

  • Lüttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 93:629–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madriz-Ordeñana K, Jørgensen H, Nielsen K, Thordal-Christensen H (2016) First report of Kalanchoe leaf and stem spot caused by Corynespora cassiicola in Denmark. Plant Dis 101:505–505

    Article  Google Scholar 

  • Mariotti D, Fontana GS, Santini L, Constantino P (1989) Evaluation under field conditions of the morphological alterations (`hairy root phenotype') induced on Nicotiana tabacum by different Ri plasmid T-DNA genes. J Genet Breed 43:157–164

    Google Scholar 

  • Marousky F, Harbaugh B (1979) Ethylene-induced floret sleepiness in Kalanchoe blossfeldiana Poelln. Physiological disorders. HortSci 14:505–507

    CAS  Google Scholar 

  • Moriguchi K, Maeda Y, Satou M, Kataoka M, Tanaka N, Yoshida K (2000) Analysis of unique variable region of a plant root inducing plasmid, pRi1724, by the construction of its physical map and library. DNA Res 7:157–163

    Article  CAS  PubMed  Google Scholar 

  • Mortensen LM (2014) The effect of wide-range photosynthetic active radiations on photosynthesis, growth and flowering of Rosa sp. and Kalanchoe blossfeldiana. Am J Plant Sci 5:1489–1498

    Article  Google Scholar 

  • Mort M, Douglas E, Soltis E, Soltis P, Francisco-Ortega J, Santos-Guerra A (2001) Phylogenetic relationships and evolution of Crassulaceae inferred from matK sequence data. Am J Bot 88:76–91

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee K, Brocchieri L, Burglin TR (2009) A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol 26:2775–2794. https://doi.org/10.1093/molbev/msp201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mullins MG (1989) Growth regulators in the propagation and genetic improvement of fruit crops. Acta Hortic 239:101–108

    Article  Google Scholar 

  • Müller R (2011) Physiology and genetics of plant quality improvement. Doctoral dissertation, University of Copenhagen

    Google Scholar 

  • Nakornthap A (1973) Radiation-induced somatic mutations in Kalanchoe (Kalanchoe laciniata). Kasetsart 7:13–18

    Google Scholar 

  • Nielsen AH, Olsen CE, Møller BL (2005) Flavonoids in flowers of 16 Kalanchoe blossfeldiana varieties. Phytochemistry 66:2829–2835

    Article  CAS  PubMed  Google Scholar 

  • Nell T (1992) Taking silver safely out of the longevity picture. Grower Talks June 35:41–42

    Google Scholar 

  • Olsen A, Lütken H, Hegelund JN, Müller R (2015) Ethylene resistance in flowering ornamental plants-improvements and future perspectives. Hortic Res 2:15038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittman RN (1977) Kalanchoe plant US Patent 4062 P

    Google Scholar 

  • Queen® (2017) http://www.queen.dk. Accessed 14.07.2017

  • Rademacher W (2000) Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol 51:501–531. https://doi.org/10.1146/annurev.arplant.51.1.501

    Article  PubMed  CAS  Google Scholar 

  • Riker AJ, Banfield WM, Wright WH, Keitt GW, Sagen HE (1930) Studies on infectious hairy-root of nursery apple trees. J Agric Res 41:507–540

    Google Scholar 

  • Rünger W (1966) Über die Wirkung von Lang-und Kurztagen auf das Wachstum noch nicht blühfähiger Kalanchoë. Gartenbauwissenschaft 1:429–436

    Google Scholar 

  • Sanikhani M, Frello S, Serek M (2006) TDZ induces shoot regeneration in various Kalanchoe blossfeldiana Poelln. Cultivars in the absence of auxin. Plant Cell Tissue Organ Cult 85:75–82

    Article  CAS  Google Scholar 

  • Sanikhani M, Mibus H, Stummann BM, Serek M (2008) Kalanchoe blossfeldiana plants expressing the Arabidopsis etr1-1 allele show reduced ethylene sensitivity. Plant Cell Rep 27:729–737. https://doi.org/10.1007/s00299-007-0493-6

    Article  CAS  PubMed  Google Scholar 

  • Schmulling T, Schell J, Spena A (1988) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7:2621–2629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwabe WW (1969) Kalanchoe blossfeldiana Poellniz. In: Evans LT (ed) The induction of flowering. Macmillan of Australia, Melbourne, pp 227–246

    Google Scholar 

  • Serek M, Reid MS (2000) Ethylene and postharvest performance of potted kalanchoe. Postharvest Biol Technol 18:43–48

    Article  CAS  Google Scholar 

  • Sharma GK (1970) Effects of cool nights on flowering of Kalanchoe fedschenkoi. Trans Missouri Acad Sci 3:22–28

    Google Scholar 

  • Sharma GJ (1973) Flower formation in Kalanchoe velutina induced by low night temperature. Southwest Nat 18:331–334

    Article  Google Scholar 

  • Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. Identification of open reading frames. J Biol Chem 261:108–121

    PubMed  CAS  Google Scholar 

  • Sohlberg JJ, Myrenas M, Kuusk S, Lagercrantz U, Kowalczyk M, Sandberg G, Sundberg E (2006) STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. Plant J 47:112–123. https://doi.org/10.1111/j.1365-313X.2006.02775.x

    Article  PubMed  CAS  Google Scholar 

  • Spear I (1959) Metabolic aspects of photoperiodism. In: Withrow RB (ed) Photoperiodism. Amer Assoc Adv Sci, Washington, DC, pp 289–300

    Google Scholar 

  • Spena A, Schmulling T, Koncz C, Schell JS (1987) Independent and synergistic activity of rol A, B and C loci in stimulating abnormal growth in plants. EMBO J 6:3891–3899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Staldal V, Sohlberg JJ, Eklund DM, Ljung K, Sundberg E (2008) Auxin can act independently of CRC, LUG, SEU, SPT and STY1 in style development but not apical-basal patterning of the Arabidopsis gynoecium. New Phytol 180:798–808. https://doi.org/10.1111/j.1469-8137.2008.02625.x

    Article  PubMed  CAS  Google Scholar 

  • Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plant 79:140–146

    Article  CAS  Google Scholar 

  • Topp SH, Rasmussen SK, Sander L (2008) Alcohol induced silencing of gibberellin 20-oxidases in Kalanchoe blossfeldiana. Plant Cell Tissue Organ Cult 93:241–248

    Article  CAS  Google Scholar 

  • Traoré L, Kuligowska K, Lütken H, Müller R (2014) Stigma development and receptivity of two Kalanchoë blossfeldiana cultivars. Acta Physiol Plant 36:1763–1769. https://doi.org/10.1007/s11738-014-1550-8

    Article  CAS  Google Scholar 

  • Uhl CH (1948) Cytotaxonomic studies in the subfamilies Crassuloideae, Kalanchoideae, and Cotyledonoideae of the Crassulaceae. Am J Bot 35:695–706

    Article  Google Scholar 

  • Van Ham R, Hart H (1998) Phylogenetic relationships in the Crassulaceae inferred from chloroplast DNA restriction-site variation. Am J Bot 85:123–134

    Article  PubMed  Google Scholar 

  • Varga A, Thoma L, Bruinsma J (1988) Effects of auxins and cytokinins on epigenetic instability of callus-propagated Kalanchoe blossfeldiana Poelln. Plant Cell Tissue Organ Cult 15:223–231

    Article  CAS  Google Scholar 

  • Vlielander I (2007) Kalanchoe plant named ‘Fiveranda Orange’. US Patent 17917 P2

    Google Scholar 

  • van Voorst A, Arends JC (1982) The origin and chromosome numbers of cultivars of Kalanchoe blossfeldiana Von Poelln.: their history and evolution. Euphytica 31:573–584. https://doi.org/10.1007/BF00039195

    Article  Google Scholar 

  • Wadhi M, Ram HM (1967) Shortening the juvenile phase for flowering in Kalanchoe pinnata. Pers. Planta 73:28–36

    Article  CAS  PubMed  Google Scholar 

  • White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wick RL (2017) Diseases of Kalanchoe. In: McGovern RJ, Elmer WH (eds) Handbook of Florists’ crops diseases. Springer International Publishing, Cham, pp 1–13. https://doi.org/10.1007/978-3-319-32374-9_37-1

    Chapter  Google Scholar 

  • Wilkinson JQ, Lanahan MB, Clark DG, Bleecker AB, Chang C, Meyerowitz EM, Klee HJ (1997) A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nat Biotechnol 15:444–447. https://doi.org/10.1038/nbt0597-444

    Article  PubMed  CAS  Google Scholar 

  • Willumsen K, Fjeld T (1995) The sensitivity of some flowering potted plants to exogenous ethylene. Acta Hortic 405:362–371

    Article  CAS  Google Scholar 

  • Yamada K, Honma Y, Asahi KI, Sassa T, Hino KI, Tomoyasu S (2001) Differentiation of human acute myeloid leukaemia cells in primary culture in response to cotylenin A, a plant growth regulator. Br J Haematol 114:814–821

    Article  CAS  Google Scholar 

  • Zeevaart JA (1976) Physiology of flower formation. Annu Rev Plant Physiol 28:321–348

    Article  Google Scholar 

  • Zeevaart JAD (1985). Bryophyllum. In: (ed.) Haley, A. H. CRC handbook of flowering, vol. 2. CRC Press, Boca Raton, Florida. In: CRC handbook of flowering, vol 5. pp 89–100

    Google Scholar 

  • Zimmer K (1996) Untersuchungen zur Blühinduktion bei Kalanchoë marmorata Baker. Kakteen und andere Sukkulenten 47:188–191

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn Kuligowska Mackenzie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mackenzie, K.K., Lütken, H., Coelho, L.L., Kaaber, M.D., Hegelund, J.N., Müller, R. (2018). Kalanchoë. In: Van Huylenbroeck, J. (eds) Ornamental Crops. Handbook of Plant Breeding, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-90698-0_19

Download citation

Publish with us

Policies and ethics