Skip to main content

Modeling Schizophrenia with Human Stem Cells

  • Chapter
  • First Online:
Stem Cell Genetics for Biomedical Research

Abstract

The complexity of psychiatric disorders is a challenge still to overcome, and schizophrenia has been the most prevalent yet little understood. Several studies have used knowledge from postmortem brain tissue and other models, to address difficult questions regarding diagnostic and treatment. An improvement in the translational capacity of molecular profiling studies of psychiatric disorders was achieved with the development of human-induced pluripotent stem cells (iPSCs), through provision of human neuronal-like tissue. The finding that iPSCs can recapitulate the phenotype of the donor also affords the possibility of using this approach to study both the disease and control states in a given medical area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abazyan S, Yang EJ, Abazyan B et al (2014) Mutant disrupted-in-schizophrenia 1 in astrocytes: focus on glutamate metabolism. J Neurosci Res 92:1659–1668. https://doi.org/10.1042/BST20130220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Abud EM, Ramirez RN, Martinez ES et al (2017) iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94:278–293.e9. https://doi.org/10.1016/j.neuron.2017.03.042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Banigan MG, Kao PF, Kozubek JA et al (2013) Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PLoS One 8:e48814. EP –. https://doi.org/10.1371/journal.pone.0048814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bernstein H-G, Steiner J, Guest PC et al (2015) Glial cells as key players in schizophrenia pathology: recent insights and concepts of therapy. Schizophr Res 161:4–18. https://doi.org/10.1016/j.schres.2014.03.035

    Article  PubMed  Google Scholar 

  5. Beumer W, Gibney SM, Drexhage RC et al (2012) The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J Leukoc Biol 92:959–975. https://doi.org/10.1189/jlb.0212100

    Article  PubMed  CAS  Google Scholar 

  6. Bigdeli TB, Ripke S, Bacanu S-A et al (2015) Genome-wide association study reveals greater polygenic loading for schizophrenia in cases with a family history of illness. Am J Med Genet 171:276–289. https://doi.org/10.1016/j.ajhg.2010.11.011

    Article  CAS  Google Scholar 

  7. Brennand K, Savas JN, Kim Y et al (2014) Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Mol Psychiatry 20:361–368. https://doi.org/10.1038/mp.2014.22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Brennand KJ, Marchetto MC, Benvenisty N et al (2015) Creating patient-specific neural cells for the in vitro study of brain disorders. Stem Cell Reports 5:933–945. https://doi.org/10.1016/j.stemcr.2015.10.011

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brennand KJ, Simone A, Jou J et al (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473:221–225. https://doi.org/10.1038/nature09915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Chiang C-H, Su Y, Wen Z et al (2011) Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol Psychiatry 16:358–360. https://doi.org/10.1126/science.1172482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Committee TPGCS (2008) A framework for interpreting genome-wide association studies of psychiatric disorders. Mol Psychiatry 14:10–17. https://doi.org/10.1038/mp.2008.126

    Article  CAS  Google Scholar 

  12. Consortium CASWGOTPG (2016) Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet 49:27–35. https://doi.org/10.1038/ng.3725

    Article  CAS  Google Scholar 

  13. Consortium SWGOTPG (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427. https://doi.org/10.1038/nature13595

    Article  CAS  Google Scholar 

  14. Consortium TSPG-WASG (2011) Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43:969–976. https://doi.org/10.1038/ng.940

    Article  CAS  Google Scholar 

  15. Consortium TSPG-WASG, Ripke S, Sanders AR et al (2011) Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43:969. https://doi.org/10.1038/ng.940

    Article  CAS  Google Scholar 

  16. Deleidi M, Yu C (2016) Genome editing in pluripotent stem cells: research and therapeutic applications. Biochem Biophys Res Commun 473:665–674. https://doi.org/10.1016/j.bbrc.2016.02.113

    Article  PubMed  CAS  Google Scholar 

  17. Dezonne RS, Sartore RC, Nascimento JM et al (2017) Derivation of functional human astrocytes from cerebral organoids. Sci Rep:1–14. https://doi.org/10.1038/srep45091

  18. Douvaras P, Sun B, Wang M et al (2017) Directed differentiation of human pluripotent stem cells to microglia. Stem Cell Reports 8:1516–1524. https://doi.org/10.1016/j.stemcr.2017.04.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Flaherty E, Deranieh RM, Artimovich E et al (2017) Patient-derived hiPSC neurons with heterozygous CNTNAP2 deletions display altered neuronal gene expression and network activity. npj Schizophrenia 3:35. https://doi.org/10.1038/s41537-017-0033-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Freedman R (2003) Schizophrenia. N Engl J Med 349:1738–1749. https://doi.org/10.1056/NEJMra035458

    Article  PubMed  CAS  Google Scholar 

  21. Fromer M, Pocklington AJ, Kavanagh DH et al (2014) De novo mutations in schizophrenia implicate synaptic networks. Nature 506:179–184. https://doi.org/10.1038/nature12929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Frühbeis C, Fröhlich D, Krämer-Albers E-M (2012) Emerging roles of exosomes in neuron–glia communication. Front Physiol. https://doi.org/10.3389/fphys.2012.00119

  23. Frühbeis C, Fröhlich D, Kuo WP et al (2013) Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte–neuron communication. PLoS Biol 11:e1001604. https://doi.org/10.1371/journal.pbio.1001604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Gonzalez-Pinto A, Gutierrez M, Mosquera F et al (1998) First episode in bipolar disorder: misdiagnosis and psychotic symptoms. J Affect Disord 50:41–44. https://doi.org/10.1016/S0165-0327(98)00032-9

    Article  PubMed  CAS  Google Scholar 

  25. Hakak Y, Walker JR, Li C et al (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A 98:4746. https://doi.org/10.1073/pnas.081071198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hauberg ME, Fullard J, Giambartolomei C et al (2017) Cell-type specific open chromatin profiling in human postmortem brain infers functional roles for non-coding schizophrenia LOCI. Eur Neuropsychopharmacol 27:S428–S429. https://doi.org/10.1016/j.euroneuro.2016.09.483

    Article  Google Scholar 

  27. Ho S-M, Hartley BJ, Flaherty E et al (2017) Evaluating synthetic activation and repression of neuropsychiatric-related genes in hiPSC-derived NPCs, neurons, and astrocytes. Stem Cell Reports. https://doi.org/10.1016/j.stemcr.2017.06.012

  28. Hook V, Brennand KJ, Kim Y et al (2014) Human iPSC neurons display activity-dependent neurotransmitter secretion: aberrant catecholamine levels in schizophrenia neurons. Stem Cell Reports 3:531–538. https://doi.org/10.1016/j.stemcr.2014.08.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Karayiorgou M, Simon TJ, Gogos JA (2010) 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat Rev Neurosci 11:402–416. https://doi.org/10.1038/nrn2841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kimelberg HK (2010) Functions of mature mammalian astrocytes: a current view. Neuroscientist 16:79–106. https://doi.org/10.1177/1073858409342593

    Article  PubMed  CAS  Google Scholar 

  32. Kohane IS, Masys DR, Altman RB (2006) The Incidentalome: a threat to genomic medicine. JAMA 296:212–215. https://doi.org/10.1001/jama.296.2.212

    Article  PubMed  CAS  Google Scholar 

  33. Koyama Y (2015) Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target. Front Cell Neurosci. https://doi.org/10.3389/fncel.2015.00261

  34. Lee IS, Carvalho CMB, Douvaras P et al (2015) Characterization of molecular and cellular phenotypes associated with a heterozygous CNTNAP2 deletion using patient-derived hiPSC neural cells. npj Schizophrenia 1:171. https://doi.org/10.1371/journal.pone.0044017

    Article  CAS  Google Scholar 

  35. Lee IS, Carvalho CMB, Douvaras P et al (2015) Characterization of molecular and cellular phenotypes associated with a heterozygous CNTNAP2 deletion using patient-derived hiPSC neural cells. npj Schizophrenia 1:15019. https://doi.org/10.1038/npjschz.2015.19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lin M, Pedrosa E, Hrabovsky A et al (2016) Integrative transcriptome network analysis of iPSC-derived neurons from schizophrenia and schizoaffective disorder patients with 22q11.2 deletion. BMC Syst Biol 10:105. https://doi.org/10.1186/s12918-016-0366-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ma TM, Abazyan S, Abazyan B et al (2013) Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion. Mol Psychiatry 18:557–567. https://doi.org/10.1007/s00213-003-1582-z

    Article  PubMed  CAS  Google Scholar 

  38. Mandegar MA, Huebsch N, Frolov EB et al (2016) CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Stem Cell 18:541–553. https://doi.org/10.1016/j.stem.2016.01.022

    Article  CAS  Google Scholar 

  39. Martins-de-Souza D, Maccarrone G, Wobrock T et al (2010) Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia. J Psychiatr Res 44:1176–1189. https://doi.org/10.1016/j.jpsychires.2010.04.014

    Article  PubMed  Google Scholar 

  40. Muffat J, Li Y, Omer A et al (2017) A possible role of microglia in Zika virus infection of the fetal human brain. bioRxiv. https://doi.org/10.1101/142497

  41. Muffat J, Li Y, Yuan B et al (2016) Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat Med 22:1358–1367. https://doi.org/10.1016/j.cell.2011.06.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Nascimento JM, Martins-de-Souza D (2015) The proteome of schizophrenia. npj Schizophrenia 1:14003. EP –. https://doi.org/10.1038/npjschz.2014.3

    Article  PubMed  PubMed Central  Google Scholar 

  43. Novikova SI, He F, Cutrufello NJ, Lidow MS (2006) Identification of protein biomarkers for schizophrenia and bipolar disorder in the postmortem prefrontal cortex using SELDI-TOF-MS ProteinChip profiling combined with MALDI-TOF-PSD-MS analysis. Neurobiol Dis 23:61–76. https://doi.org/10.1016/j.nbd.2006.02.002

    Article  PubMed  CAS  Google Scholar 

  44. Paşca AM, Sloan SA, Clarke LE et al (2015) Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods 12:671–678. https://doi.org/10.1038/nmeth.3415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Paulsen BDS, Maciel R d M, Galina A et al (2012) Altered oxygen metabolism associated to neurogenesis of induced pluripotent stem cells derived from a schizophrenic patient. Cell Transplant 21:1547–1559. https://doi.org/10.3727/096368911X600957

    Article  Google Scholar 

  46. Paulsen BS, Souza CS, Chicaybam L et al (2011) Agathisflavone enhances retinoic acid-induced neurogenesis and its receptors α and β in pluripotent stem cells. Stem Cells Dev 20:1711–1721. https://doi.org/10.1089/scd.2010.0446

    Article  PubMed  CAS  Google Scholar 

  47. Pedrosa E, Sandler V, Shah A et al (2011) Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. J Neurogenet 25:88–103. https://doi.org/10.3109/01677063.2011.597908

    Article  PubMed  CAS  Google Scholar 

  48. Piao J, Major T, Auyeung G et al (2015) Human embryonic stem cell-derived oligodendrocyte progenitors remyelinate the brain and rescue behavioral deficits following radiation. Stem Cell 16:198–210. https://doi.org/10.1016/j.stem.2015.01.004

    Article  CAS  Google Scholar 

  49. Purcell SM, Moran JL, Fromer M et al (2014) A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506:185–190. https://doi.org/10.1038/nature12975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ripke S, O’Dushlaine C, Chambert K et al (2013) Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 45:1150–1159. https://doi.org/10.1038/ng.2742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Robicsek O, Karry R, Petit I et al (2013) Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry 18:1067–1076. https://doi.org/10.1038/mp.2013.67

    Article  PubMed  CAS  Google Scholar 

  52. Schmidt MJ, Mirnics K (2015) Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacology 40:190–206. https://doi.org/10.1038/npp.2014.95

    Article  PubMed  Google Scholar 

  53. Schmitt A, Martins-de-Souza D, Akbarian S et al (2016) Consensus paper of the WFSBP Task Force on Biological Markers: criteria for biomarkers and endophenotypes of schizophrenia, part III: molecular mechanisms. World J Biol Psychiatry:1–27. https://doi.org/10.1080/15622975.2016.1224929

  54. Schreiber M, Dorschner M, Tsuang D (2013) Next-generation sequencing in schizophrenia and other neuropsychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 162B:671–678. https://doi.org/10.1002/ajmg.b.32156

    Article  PubMed  Google Scholar 

  55. Shaltouki A, Peng J, Liu Q et al (2013) Efficient generation of astrocytes from human pluripotent stem cells in defined conditions. Stem Cells 31:941–952. https://doi.org/10.1016/j.cell.2008.10.029

    Article  PubMed  CAS  Google Scholar 

  56. Silber J, Lim DA, Petritsch C et al (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:1. 6:14. https://doi.org/10.1186/1741-7015-6-14

    Article  CAS  Google Scholar 

  57. Sloan SA, Darmanis S, Huber N et al (2017) Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron 95:779–790.e6. https://doi.org/10.1016/j.neuron.2017.07.035

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Srikanth P, Han K, Callahan DG et al (2015) Genomic DISC1 disruption in hiPSCs alters Wnt signaling and neural cell fate. Cell Rep 12:1414–1429. https://doi.org/10.1016/j.celrep.2015.07.061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Sullivan PF, Daly MJ, O’Donovan M (2012) Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 13:537–551. https://doi.org/10.1038/nrg3240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Tcw J, Wang M, Pimenova AA et al (2017) An efficient platform for astrocyte differentiation from human induced pluripotent stem cells. Stem Cell Reports 9:600–614. https://doi.org/10.1016/j.stemcr.2017.06.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Topol A, Zhu S, Hartley BJ et al (2016) Dysregulation of miRNA-9 in a subset of schizophrenia patient-derived neural progenitor cells. Cell Rep 15:1024–1036. https://doi.org/10.1016/j.celrep.2016.03.090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Topol A, Zhu S, Tran N et al (2015) Correspondence. Biol Psychiatry:1–6. https://doi.org/10.1016/j.biopsych.2014.12.028

  63. Torres-Ruiz R, Rodriguez-Perales S (2017) CRISPR-Cas9 technology: applications and human disease modelling. Brief Funct Genomics 16:4–12. https://doi.org/10.1093/bfgp/elw025

    Article  PubMed  CAS  Google Scholar 

  64. Uranova N, Orlovskaya D, Vikhreva O et al (2001) Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 55:597–610. https://doi.org/10.1016/S0361-9230(01)00528-7

    Article  PubMed  CAS  Google Scholar 

  65. Wang S, Bates J, Li X et al (2013) Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12:252–264. https://doi.org/10.1016/j.stem.2012.12.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Wen Z, Nguyen HN, Guo Z et al (2014) Synaptic dysregulation in a human iPS cell model of mental disorders. Nature. epub ahead of print. https://doi.org/10.1038/nature13716:414, https://doi.org/10.1038/nature13716

  67. Wong AHC, Van Tol HHM (2003) Schizophrenia: from phenomenology to neurobiology. Neurosci Biobehav Rev 27:269–306. https://doi.org/10.1016/S0149-7634(03)00035-6

    Article  PubMed  Google Scholar 

  68. World Health Organization (2008) The global burden of disease. World Health Organization, Geneva

    Google Scholar 

  69. Wright C, Turner JA, Calhoun VD, Perrone-Bizzozero N (2013) Potential impact of miR-137 and its targets in schizophrenia. Front Genet 4:58. https://doi.org/10.3389/fgene.2013.00058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Xia M, Zhu S, Shevelkin A et al (2016) DISC1, astrocytes and neuronal maturation: a possible mechanistic link with implications for mental disorders. J Neurochem 138:518–524. https://doi.org/10.1111/jnc.13663

    Article  PubMed  CAS  Google Scholar 

  71. Ye F, Kang E, Yu C et al (2017) DISC1 regulates neurogenesis via modulating kinetochore attachment of Ndel1/Nde1 during mitosis. Neuron 96:1041–1054.e5. https://doi.org/10.1016/j.neuron.2017.10.010

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Yin J, Lin J, Luo X et al (2014) miR-137: a new player in schizophrenia. Int J Mol Sci 15:3262–3271. https://doi.org/10.1016/j.biopsych.2013.06.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Yoon K-J, Nguyen HN, Ursini G et al (2014) Modeling a genetic risk for schizophrenia in iPSCs and mice reveals neural stem cell deficits associated with Adherens junctions and polarity. Stem Cell 15:79–91. https://doi.org/10.1016/j.stem.2014.05.003

    Article  CAS  Google Scholar 

  74. Yu DX, Di Giorgio FP, Yao J et al (2014) Modeling hippocampal neurogenesis using human pluripotent stem cells. Stem Cell Reports 2:295–310. https://doi.org/10.1016/j.stemcr.2014.01.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Zhao D, Lin M, Chen J et al (2015) MicroRNA profiling of neurons generated using induced pluripotent stem cells derived from patients with schizophrenia and schizoaffective disorder, and 22q11.2 del. PLoS One 10:e0132387. EP –. https://doi.org/10.1371/journal.pone.0132387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zuccoli GS, Martins-de-Souza D, Guest PC et al (2017) Combining patient-reprogrammed neural cells and proteomics as a model to study psychiatric disorders. In: Guest PC (ed) Proteomic methods in neuropsychiatric research. Springer International Publishing, Cham, pp 279–287

    Chapter  Google Scholar 

Download references

Acknowledgments

JMN, VMSC, GSZ, and DMS are supported by the São Paulo Research Foundation (FAPESP) grants 14/21035-0, 16/07332-7, 16/04912-2, 13/08711-3, and 14/10068-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Minardi Nascimento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minardi Nascimento, J., Saia-Cereda, V.M., Zuccoli, G.S., Gouvêa-Junqueira, D., Martins-de-Souza, D. (2018). Modeling Schizophrenia with Human Stem Cells. In: Delgado-Morales, R. (eds) Stem Cell Genetics for Biomedical Research. Springer, Cham. https://doi.org/10.1007/978-3-319-90695-9_2

Download citation

Publish with us

Policies and ethics