Skip to main content

Genetic Transformation of Millets: The Way Ahead

  • Chapter
  • First Online:
Biotechnologies of Crop Improvement, Volume 2

Abstract

Millets are a group of small-seeded cereals and forage grasses grown in arid and semiarid regions of Asia and Africa, where majority of cereals cannot be relied upon to provide sustainable yield. While major cereals such as wheat, rice, and maize provide only food security, millets provide multiple securities, viz., food, fodder, health, nutrition, livelihood, and ecological. In the present chapter, recent advances in genetic transformation studies conducted in millets to date have been summarized. Millets have been transformed primarily by particle bombardment, whereas, Agrobacterium-mediated transformation is still lagging behind. Efforts need to be made to genetically improve millets by incorporating certain agronomically important traits, such as resistance to biotic and abiotic stresses, resistance to lodging, increased seed size, and palatability along with softness of grain to make these crops more desirable for consumer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agharkar M, Lomba P, Altpeter F, Zhang H, Kenworthy K, Lange T (2007) Stable expression of AtGA2ox1 in a low-input turfgrass (Paspalum notatum Flugge) reduces bioactive gibberellin levels and improves turf quality under field conditions. Plant Biotechnol J 5(6):791–801

    Article  PubMed  CAS  Google Scholar 

  • Altpeter F, James VA (2005) Genetic transformation of turf type bahiagrass (Paspalum notatum Flugge) by biolistic gene transfer. Int Turfgrass Soc Res J 10:1–5

    Google Scholar 

  • Anami S, Njuguna E, Coussens G, Aesaert S, Van Lijsebettens M (2013) Higher plant transformation: principles and molecular tools. Int J Dev Biol 57(6-7-8):483–494

    Article  PubMed  CAS  Google Scholar 

  • Barampuram S, Zhang ZJ (2011) Recent advances in plant transformation. Methods Mol Biol 701:1–35

    Article  PubMed  CAS  Google Scholar 

  • Barcelo P, Rasco-Gaunt S, Thorpe C, Lazzeri PA (2001) Transformation and gene expression. Adv Bot Res 34:59–126

    Article  CAS  Google Scholar 

  • Bayer GY, Yemets AI, Blume YB (2014) Obtaining the transgenic lines of finger millet Eleusine coracana (L.). with dinitroaniline resistance. Cytol Genet 48(3):139–144

    Article  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Comptes rendus de l'Académie des sciences. Série 3, Sciences de la vie 316(10):1194–1199

    CAS  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30(6):555–561

    Article  PubMed  CAS  Google Scholar 

  • Benson EE (2000) Sepecial symposium: in vitro plant recalcitrance in vitro plant recalcitrance: an introduction. In Vitro Cell Dev Biol Plant 36(3):141–148

    Article  Google Scholar 

  • Bhaskaran S, Smith RH (1990) Regeneration in cereal tissue culture: a review. Crop Sci 30:1328–1336

    Article  CAS  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  PubMed  CAS  Google Scholar 

  • Burton GW, Forbes I (1960) The genetics and manipulation of obligate apomixis in common bahiagrass (Paspalum notatum Flu¨gge). In: Proceedings of the VIII International Grassland Congress. Alden Press, Oxford, pp 66–71

    Google Scholar 

  • Bytebier B, Deboek F, De Greve H, van Montagu M, Hemalsteens JP (1987) T-DNA organisation in tumour cultures and transgenic plants of the monocotyledon Asparagus officinalis. Proc Natl Acad Sci U S A 84:5345–5349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2011) Agrobacterium mediated transformation of Finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants. Plant Cell Rep 30:1759–1770

    Article  PubMed  CAS  Google Scholar 

  • Ceasar SA, Baker A, Ignacimuthu S (2017) Functional characterization of the PHT1 family transporters of foxtail millet with development of a novel Agrobacterium-mediated transformation procedure. Sci Rep. https://doi.org/10.1038/s41598-017-14447-0

  • Chang WC, Lee TY, Huang HD, Huang HY, Pan RL (2008) PlantPAN: plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genomics 9(1):561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cho MJ, Wu E, Kwan J, Yu M, Banh J, Linn W, Anand A, Li Z, TeRonde S, Register JC, Jones TJ (2014) Agrobacterium-mediated high-frequency transformation of an elite commercial maize (Zea mays L.) inbred line. Plant Cell Rep 33:1767–1777

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail P (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium – mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  PubMed  CAS  Google Scholar 

  • Commandeur U, Twyman RM, Fischer R (2003) The biosafety of molecular farming in plants. AgBiotechNet 5(110):1–9

    Google Scholar 

  • Dahleen LS (1995) Improved plant regeneration from barley callus cultures by increased copper levels. Plant Cell Tiss Org Cult 43:267–269

    CAS  Google Scholar 

  • Devi P, Sticklen M (2002) Culturing shoot-tip clumps of pearl millet [Pennisetum glaucum (L.) R. Br.] and optimal microprojectile bombardment parameters for transient expression. Euphytica 125:45–50

    Article  CAS  Google Scholar 

  • Dosad S, Chawla HS (2016) In vitro plant regeneration and transformation studies in millets: current status and future prospects. Indian J Plant Physiol 21(3):239–254

    Article  CAS  Google Scholar 

  • Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass modelsystem. Plant Physiol 149:137–141. https://doi.org/10.1104/pp.108.129627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eapen S, George L (1990) Influence of phytohormones, carbohydrates, amino acids, growth supplements and antibiotics on somatic embryogenesis and plant differentiation in finger millet. Plant Cell Tiss Org Cult 22:87–93

    Article  CAS  Google Scholar 

  • Estrella LH, Depicker A, Montagu MV, Schell J (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–213

    Article  Google Scholar 

  • Feldmann KA, Marks MD (1987) Agrobacterium – mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet MGG 208(1–2):1–9

    Article  CAS  Google Scholar 

  • Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle in flow gun for DNA delivery to plant cells. Plant Cell Rep 11:323–328

    Article  PubMed  CAS  Google Scholar 

  • Franck A, Guilley H, Jonard G, Richards K, Hirth L (1980) Nucleotide sequence of cauliflower mosaic virus DNA. Cell 21:285–294

    Article  PubMed  CAS  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Gelvin SB (1986) Genetic transformation in higher plants. Crit Rev Plant Sci 4(1):1–46

    Article  CAS  Google Scholar 

  • Gebre E, Gugsa L, Schlüter U, Kunert K (2013) Transformation of tef (Eragrostis tef) by Agrobacterium through immature embryo regeneration system for inducing semi-dwarfism. S Af J Bot 87:9–17

    Article  CAS  Google Scholar 

  • Girgi M, O’Kennedy MM, Morgenstern A, Smith G, Lorz H, Oldach KH (2002) Transgenic and herbicide resistant pearl millet (Pennisetum glaucum L.) R.Br. via microprojectile bombardment of scutellar tissue. Mol Breed 10:243–252

    Article  CAS  Google Scholar 

  • Girgi M, Breese WA, Lörz H, Oldach KH (2006) Rust and downy mildew resistance in pearl millet (Pennisetum glaucum) mediated by heterologous expression of the afp gene from Aspergillus giganteus. Transgenic Res 15(3):313–324

    Article  PubMed  CAS  Google Scholar 

  • Goldman JJ, Hanna WW, Fleming G, Ozias-Akins P (2003) Fertile transgenic pearl millet [Pennisetum glaucum (L.) R. Br.] plants recovered through microprojectile bombardment and phosphinothricin selection of apical meristem-, inflorescence-, and immature embryo-derived embryogenic tissues. Plant Cell Rep 21:999–1009

    Article  PubMed  CAS  Google Scholar 

  • Gondo T, Shin-ichi T, Ryo A, Osamu K, Franz H (2005) Green, herbicide-resistant plants by particle inflow gun mediated gene transfer to diploid bahiagrass (Paspalum notatum). J Plant Physiol 16:1367–1375

    Article  CAS  Google Scholar 

  • Grando MF, Franklin CI, Shatters JRG (2002) Optimizing embryogenic callus production and plant regeneration from ‘Tifton 9’ bahiagrass seed explants for genetic manipulation. Plant Cell Tiss Org Cult 71:213–222

    Article  CAS  Google Scholar 

  • Gupta P, Raghuvanshi S, Tyagi AK (2001) Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echinochloa crusgalli. Plant Biotechnol 18:275–282

    Article  CAS  Google Scholar 

  • Gelvin SB (2003) Agrobacterium -mediated plant transformation: the biology behind the “Gene-Jockeying” tool. Microbiol Mol Biol Rev 67(1):16–37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamilton RH, Fall MZ (1971) The loss of tumor-initiating ability in Agrobacterium tumefaciens by incubation at high temperature. Cell Mol Life Sci 27(2):229–230

    Article  CAS  Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci U S A 94:2122–2127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hauptmann RM, Ozias-Akins P, Vasil V, Tabaeizadeh Z, Rogers SG, Horsch RB, Vasil I, Fraley RT (1987) Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Rep 6:265–270

    Article  PubMed  CAS  Google Scholar 

  • Hema R, Vemanna RS, Sreeramulu S, Reddy CP, Kumar MS, Udayakumar M (2014) Stable expression of mtlD gene imparts multiple stress tolerance in Finger millet. PLoS One. https://doi.org/10.1371/journal.pone.0099110

  • Hiei Y, Komari T (2008) Agrobacterium -mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3:824–834

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303(5913):179–180

    Article  CAS  Google Scholar 

  • Hood EE, Helmet GL, Fraley RT, Chilton M-D (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2(4):208–218

    Article  CAS  Google Scholar 

  • Ignacimuthu S, Ceasar SA (2012) Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. J Biosci 37:135–147

    Article  PubMed  CAS  Google Scholar 

  • Ignacimuthu S, Kannan P (2013) Agrobacterium – mediated transformation of pearl millet (Pennisetum typhoides (L.) R. Br.) for fungal rust. Asian J Plant Sci 112:97–108

    Article  CAS  Google Scholar 

  • Jagga-Chugh S, Kachhwaha S, Sharma M, Kothari-Chajer A, Kothari SL (2012) Optimization of factors influencing microprojectile bombardment-mediated genetic transformation of seed-derived callus and regeneration of transgenic plants in Eleusine coracana (L.) Gaertn. Plant cell. Tissue Organ Cult (PCTOC) 109(3):401–410

    Article  CAS  Google Scholar 

  • Jalaja N, Maheshwari P, Naidu KR, Kavi Kishor PB (2016) In vitro regeneration and optimization of conditions for transformation methods in Pearl millet, Pennisetum glaucum (L.). Int J Clin Biol Sci 1:34–52

    Google Scholar 

  • James C (2014) Executive summary. In: Global status of commercialized biotech/GM crops. ISAAA brief no. International Service for the Acquisition of Agri-Biotech Applications, Ithaca, p 2013

    Google Scholar 

  • James VA, Neibaur JI, Altpeter F (2008) Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance. Transgenic Res 17:93–104

    Article  PubMed  CAS  Google Scholar 

  • Janice M, Zale S, Agarwal S, Loar CMS (2009) Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Rep 28(6):903–913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jayasudha BG, Sushma AM, Prashantkumar HS, Sashidhar VR (2014) An efficient in vitro Agrobacterium–mediated transformation protocol for raising salinity tolerant transgenic plants in finger millet [Eleusine coracana (L.) Gaertn.]. Plant Archives 14:823–829

    Google Scholar 

  • Jha P, Shashi RA, Agnihotri PK, Kulkarni VM, Bhat V (2011) Efficient Agrobacterium – mediated transformation of Pennisetum glaucum (L.) R. Br. using shoot apices as explant source. Plant Cell Tiss Org Cult 107:501–512

    Article  CAS  Google Scholar 

  • Kikkert JR (1993) The biolistic PDS-1000/he device. Plant Cell Tiss Org Cult 33:221–226

    Article  CAS  Google Scholar 

  • Komari T (1990) Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep 9:303–306

    Article  PubMed  CAS  Google Scholar 

  • Komari T, Takakura Y, Ueki J, Kato N, Ishida Y, Hiei Y (2006) Binary vectors and super-binary vectors. Agrobacterium protocols. Methods Mol Biol 343:15–42

    PubMed  CAS  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of the TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  • Kothari SL, Agarwal K, Kumar S (2004) Inorganic nutrient manipulation for highly improved in vitro plant regeneration in finger millet- Eleusine coracana (L.) Gaertn. In Vitro Cell Dev Biol Plant 40:515–519

    Article  CAS  Google Scholar 

  • Kothari SL, Kumar S, Vishnoi RK, Kothari SL, Watanabe KN (2005) Applications of biotechnology for improvement of millet crops: review of progress and future prospects. Plant Biotechnol 22:81–88

    Article  CAS  Google Scholar 

  • Kothari-Chajer A, Sharma M, Kachhwaha S, Kothari SL (2008) Micronutrient optimization results into highly improved in vitro plant regeneration in kodo (Paspalum scrobiculatum L.) and finger (Eleusine coracana (L.) Gaertn.) millets. Plant Cell Tiss Org Cult 94(2):105–112

    Article  CAS  Google Scholar 

  • Lakkakula S, Stanislaus AC, Jayabalan S, Arockiam SR, Periyasamy R, Manikandan R (2015) Direct plant regeneration from in vitro derived shoot apical meristems of finger millet (Eleusine coracana (L.) Gaertn.). In Vitro Cell Dev Biol Plant 51:192–200

    Google Scholar 

  • Lakkakula S, Periyasamy R, Stanislaus AC, Arokiam SR, Subramani P, Ramakrishnan RK, Alagesan S, Manikandan R (2016) Effects of cefotaxime, amino acids and carbon source on somatic embryogenesis and plant regeneration in four Indian genotypes of foxtail millet (Setaria italica L.). In Vitro Cell Dev Biol Plant 52:140–153

    Article  CAS  Google Scholar 

  • Lakkakula S, Stanislaus AC, Manikandan R (2017) Improved Agrobacterium-mediated transformation and direct plant regeneration in four cultivars of finger millet (Eleusine coracana (L.) Gaertn.). Plant Cell Tiss Org Cult 131:547–565

    Article  CAS  Google Scholar 

  • Lambe P, Dinant M, Matagne RF (1995) Differential long-term expression and methylation of the hygromycin phosphotransferase (hph) and β-glucuronidase (GUS) genes in transgenic pearl millet (Pennisetum americanum) callus. Plant Sci 108:51–62

    Article  CAS  Google Scholar 

  • Lambe P, Dinant M, Deltour R (2000) Transgenic pearl millet (Pennisetum glaucum). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, transgenic crops I, vol 46. Springer, Berlin, pp 84–108

    Chapter  Google Scholar 

  • Last DI, Bretell RIS, Chamberlain DA, Chaundhury AM, Larkin PJ, Marsh EL, Peacock WJ, Dennis ES (1991) pEmu: an improved promoter for gene expression in cereal cells. Theor Appl Genet 81:581–588

    Article  PubMed  CAS  Google Scholar 

  • Latha MA, Rao KV, Reddy VD (2005) Production of transgenic plants resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn.). Plant Sci 169:657–667

    Article  CAS  Google Scholar 

  • Latha MA, Rao KV, Reddy TP, Reddy VD (2006) Development of transgenic pearl millet (Pennisetum glaucum (L.) R. Br.) plants resistant to downy mildew. Plant Cell Rep 25:927–935

    Article  PubMed  CAS  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Z, Upadhyaya NM, Meena S, Gibbs AJ, Waterhouse PM (1997) Comparison of promoters and selectable marker genes for use in Indica rice transformation. Mol Breed 3:1–14

    Article  CAS  Google Scholar 

  • Libiakova G, Jørgensen B, Palmgren G, Ulvskov P, Johansen E (2001) Efficacy of an intron-containing kanamycin resistance gene as a selectable marker in plant transformation. Plant Cell Rep 20(7):610–615

    Article  CAS  Google Scholar 

  • Liu Y, Yu J, Zhao Q, Zhu D, Ao G (2005) Genetic transformation of millet (Setaria italica) by Agrobacterium. J Agric Biotechnol 13:32–37

    CAS  Google Scholar 

  • Liu Y, Feng X, Xu Y, Yu J, Ao G, Peng Z, Zhao Q (2009) Overexpression of millet ZIP-like gene (SiPf40) affects lateral bud outgrowth in tobacco and millet. Plant Physiol Biochem 47:1051–1060

    Article  PubMed  CAS  Google Scholar 

  • Luciani G, Altpeter F, Yactayo-Chang J, Zhang H, Gallo M, Meagher RL, Wofford D (2007) Expression of in Bahiagrass enhances resistance to fall armyworm. Crop Sci 47(6):2430–2436

    Article  CAS  Google Scholar 

  • Maas C, Simpson CG, Eckes P, Schickler H, Brown JWS, Reiss B, Salchert K, Chet I, Schell J, Reichel C (1997) Expression of intron modified NPT II genes in monocotyledonous and dicotyledonous plant cells. Mol Breed 3:15–28

    Article  CAS  Google Scholar 

  • Mahalakshmi S, Christopher GSB, Reddy TP, Rao KV, Reddy VD (2006) Isolation of a cDNA clone (PcSrp) encoding serine-rich-protein from Porteresia coarctata T. and its expression in yeast and finger millet (Eleusine coracana L.) affording salt tolerance. Planta 224(2):347–359

    Article  PubMed  CAS  Google Scholar 

  • Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342

    Article  CAS  Google Scholar 

  • Mancini M, Woitovich N, Permingeat HR, Podio M, Siena LA, Ortiz JPA, Pessino SC, Felitti SA (2014) Development of a modified transformation platform for apomixis candidate genes research in Paspalum notatum (bahiagrass). In Vitro Cell Dev Biol Plant. https://doi.org/10.1007/s11627-014-9596-2

    Article  CAS  Google Scholar 

  • Martins PK, Nakayama TJ, Ribeiro AP, Cunha BADBD, Nepomuceno AL, Harmon FG et al (2015a) Setaria viridis floral-dip: a simple and rapid Agrobacterium -mediated transformation method. Biotechnol Rep 6:61–63

    Article  Google Scholar 

  • Martins PK, Ribeiro AP, Cunha BADB, Kobayashi AK, Molinari HBC (2015b) A simple and highly efficient Agrobacterium-mediated transformation protocol for Setaria viridis. Biotechnol Rep 6:41–44

    Article  Google Scholar 

  • Meyer P, Walgenbach E, Bussmann K, Hombrecher G, Saedler H (1985) Synchronized tobacco protoplasts are efficiently transformed by DNA. Mol Gen Genet MGG 201(3):513–518

    Article  CAS  Google Scholar 

  • Mohanty BD, Gupta SD, Ghosh PD (1985) Callus initiation and plant regeneration in ragi (Eleusine coracana Gaertn). Plant Cell Tiss Org Cult 5:147–150

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay for tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niedz RP, Evens TJ (2007) Regulating plant tissue growth by mineral nutrition. In Vitro Cell Dev Biol Plant 43:370–381

    Article  CAS  Google Scholar 

  • Niedz RP, Sussman MR, Satterlee JS (1995) Green fluorescent protein: an in vivo reporter of plant gene expression. Plant Cell Rep 14(7):403–406

    Article  PubMed  CAS  Google Scholar 

  • O’Kennedy MM, Burger JT, Botha FC (2004) Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Rep 22:684–690

    Article  PubMed  CAS  Google Scholar 

  • O’Kennedy MM, Crampton BG, Lorito M, Chakauya E, Breese WA, Burger JT, Botha FC (2011) Expression of a b-1,3-glucanase from a biocontrol fungus in transgenic pearl millet. S Afr J Bot 77:335–345

    Article  CAS  Google Scholar 

  • Ohta S, Mita S, Hattori T, Nakamura K (1990) Construction and expression in tobacco of a β -glucuronidase (GUS) reporter gene containing an intron within the coding region. Plant Cell Physiol 31:805–813

    CAS  Google Scholar 

  • Oldach K, Morgenstern A, Rother S, Girgi M, O'Kennedy M, Lörz H (2001) Efficient in vitro plant regeneration from immature zygotic embryos of pearl millet (Pennisetum glaucum (L.) R. Br.) and Sorghum bicolor (L.) Moench. Plant Cell Rep 20(5):416–421

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Ma X, Liang H, Zhao Q, Zhu D, Yu J (2015) Spatial and temporal activity of the foxtail millet (Setaria italica) seed-specific promoter pF128. Planta 241:57–67

    Article  PubMed  CAS  Google Scholar 

  • Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2):229–233

    Article  PubMed  CAS  Google Scholar 

  • Plaza-Wuthrich S, Tadele Z (2012) Millet improvement through regeneration and transformation. Biotechnol Mol Biol Rev 7:48–61

    Google Scholar 

  • Qin FF, Zhao Q, Ao GM, Yu JJ (2008) Co-suppression of Si401, a maize pollen specific Zm401 homologous gene, results in aberrant anther development in foxtail millet. Euphytica 163(1):103–111

    Article  CAS  Google Scholar 

  • Raineri DM, Bottino P, Gordon MP, Nester EW (1990) Agrobacterium – mediated transformation of rice (Oryza sativa L.). Nat Biotechnol 8(1):33–38

    Article  CAS  Google Scholar 

  • Ramadevi R, Rao KV, Reddy VD (2014) Agrobacteriumtumefaciens-mediated genetic transformation and production of stable transgenic pearl millet (Pennisetum glaucum [L.] R. Br.). In Vitro Cell Dev Biol Plant 50(4):392–400

    Article  CAS  Google Scholar 

  • Ramegowda Y, Venkategowda R, Jagadish P, Govind G, Hanumanthareddy RR, Makarla U, Guligowda SA (2013) Expression of a rice Zn transporter, OsZIP1, increases Zn concentration in tobacco and finger millet transgenic plants. Plant Biotechnol Rep 7:309–319

    Article  Google Scholar 

  • Ramineni R, Sadumpati V, Khareedu VR, Vudem DR (2014) Transgenic pearl millet male fertility restorer line (ICMP451) and hybrid (ICMH451) expressing Brassica juncea nonexpressor of pathogenesis related genes 1 (BjNPR1) exhibit resistance to downy mildew disease. PLoS One 9(3):e90839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saha P, Blumwald E (2016) Spike-dip transformation of Setaria viridis. Plant J 86(1):89–101

    Google Scholar 

  • Sahrawat AK, Chand S (1999) Stimulatory effect of copper on plant regeneration in indica rice (Oryza sativa L.). J Plant Physiol 154:517–522

    Article  CAS  Google Scholar 

  • Sai NK, Visarada KBRS, Lakshmi YA, Pashupatinath E, Rao SV, Seetharama N (2006) In vitro culture methods in sorghum with shoot tip as the explant material. Plant Cell Rep 25(3):174–182

    Article  CAS  Google Scholar 

  • Sandhu S, Altpeter F (2008) Co-integration, co-expression and inheritance of unlinked minimal transgene expression cassettes in an apomictic turf and forage grass (Paspalum notatum Flüggé). Plant Cell Rep 27(11):1755–1765

    Article  PubMed  CAS  Google Scholar 

  • Sandhu S, Altpeter F, Blount AR (2007) Apomictic bahiagrass expressing the bar gene is highly resistant to glufosinate under field conditions

    Article  CAS  Google Scholar 

  • Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. J Part Sci Technol 5:27–37

    Article  CAS  Google Scholar 

  • Sen S, Dutta S (2016) A potent bidirectional promoter from the monocot cereal Eleusine coracana. Phytochemistry 129:24–35

    Article  PubMed  CAS  Google Scholar 

  • Sharma KK, Ortiz R (2000) Program for the application of genetic transformation for crop improvement in the semiarid tropics. In Vitro Cell Dev Biol Plant 36:83–92

    Article  Google Scholar 

  • Sharma M, Kothari-Chajer A, Jagga-Chugh S, Kothari SL (2011) Factors influencing Agrobacterium tumefaciens-mediated genetic transformation of Eleusine coracana (L.) Gaertn. Plant Cell Tiss Org Cult 105(1):93–104

    Article  CAS  Google Scholar 

  • Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Physiol 59(3):223–239

    Article  CAS  Google Scholar 

  • Smirnova OG, Ibragimova SS, Kochetov AV (2012) Simple database to select promoters for plant transgenesis. Transgenic Res 21(2):429–437

    Article  PubMed  CAS  Google Scholar 

  • Smith RL, Grando MF, Li YY, Seib JC, Shatters RG (2002) Transformation of bahiagrass (Paspalum notatum Flugge). Plant Cell Rep 20:1017–1021

    Article  CAS  Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318(6047):624–629

    Article  Google Scholar 

  • Stoger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P, Fischer R (2000) Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol 42(4):583–590

    Article  PubMed  CAS  Google Scholar 

  • Thakur RP (2008) Pearl millet. In: Satish L, Mawar R, Rathore BS (eds) Disease management in arid land crops. Scientific Publishers, Jodhpur, pp 21–41

    Google Scholar 

  • Tiecoura K, Kouassi AB, Oulo N, Gonedele Bi S, Dinant M, Ledou L (2015) In vitro transformation of pearl millet (Pennisetum glaucum (L). R. BR.): selection of chlorsulfuron resistant plants and long term expression of the gus gene under the control of the emu promoter. Afr J Biotechnol 14:3112–3123

    Article  CAS  Google Scholar 

  • Ueki S, Lacroix B, Krichevsky A, Lazarowitz SG, Citovsky V (2009) Functional transient genetic transformation of Arabidopsis leaves by biolistic bombardment. Nat Protoc 4(1):71

    Article  PubMed  CAS  Google Scholar 

  • Usami S, Morikawa S, Takebe I, Machida Y (1987) Absence in monocotyledonous plants of the diffusible plant factors inducing T-DNA circularization and vir gene expression in Agrobacterium. Mol Gen Genet 209:221–226

    Article  PubMed  CAS  Google Scholar 

  • Vain P, Finer KR, Engler DE, Pratt RC, Finer JJ (1996) Intron-mediated enhancement of gene expression in maize (Zea mays L.) and bluegrass (Poa pratensis L.). Plant Cell Rep 15:489–494

    Article  PubMed  CAS  Google Scholar 

  • Van Larebeke N, Engler G, Holsters M, Van den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature 252(5479):169–170

    Article  PubMed  Google Scholar 

  • Vancanneyt G, Schmidt R, O'Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium tumefaciens plant transformation. Mol Gen Genet 220:245–250

    Article  PubMed  CAS  Google Scholar 

  • Vasil IK (1982) Plant cell culture and somatic cell genetics of cereals and grasses

    Google Scholar 

  • Vikrant A, Rashid A (2002) Somatic embryogenesis from immature and mature embryos of a minor millet Paspalum scrobiculatum L. Plant Cell Tiss Org Cult 69:71–77

    Article  CAS  Google Scholar 

  • Vikrant A, Rashid A (2003) Somatic embryogenesis from mesocotyl and leaf base segments of Paspalum scrobiculatum L., minor millet. In Vitro Cell Dev Biol Plant 39:485–489

    Article  Google Scholar 

  • Wang MZ, Pan YL, Li C, Liu C, Zhao Q, Ao GM, Yu JJ (2011) Culturing of immature inflorescences and Agrobacterium-mediated transformation of foxtail millet (Setaria italica). Afr J Biotechnol 10:16466–16479

    Google Scholar 

  • Wang M, Li P, Li C, Pan Y, Jiang X, Zhu D, Zhao Q, Yu J (2014) SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biol 14(1):290

    Google Scholar 

  • Wu LM, Wei YM, Zheng YL (2006) Effects of silver nitrate on the tissue culture of immature wheat embryos. Russ J Plant Physiol 53(4):530–534

    Article  CAS  Google Scholar 

  • Xiong X, James VA, Zhang H, Altpeter F (2009) Constitutive expression of the barley HvWRKY38 transcription factor enhances drought tolerance in turf and forage grass (Paspalum notatum Flugge). Mol Breeding 25:419–432

    Article  CAS  Google Scholar 

  • Yemets AI, Bayer GY, Blume YB (2013) An effective procedure for in vitro culture of Eleusine coracana (L.) and its application. ISRN Botany. https://doi.org/10.1155/2013/853121

  • Yilmaz A, Nishiyama MY, Fuentes BG, Souza GM, Janies D, Gray J, Grotewold E (2009) GRASSIUS: a platform for comparative regulatory genomics across the grasses. Plant Physiol 149(1):171–180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Lomba P, Altpeter F (2007) Improved turf quality of transgenic bahiagrass (Paspalum notatum Flugge) constitutively expressing the ATHB16 gene, a repressor of cell expansion. Mol Breed 20:415–423

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dosad, S., Chawla, H.S. (2018). Genetic Transformation of Millets: The Way Ahead. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-90650-8_11

Download citation

Publish with us

Policies and ethics