Skip to main content

The Shape and the Size of the Earth in the Eighteenth Century

  • Chapter
  • First Online:

Abstract

The last decades of the seventeenth century were particularly important for the astronomical observations and their correlated theories: recall that a few years before the foundation of the Académie Royale des Sciences in Paris, the Royal Society of London was also founded (1662), and that the two competed in obtaining successes in the scientific field. After Picard’s undertaking, which resulted in what at that time was the most reliable measurement of the terrestrial meridian, the Académie undertook to carry out several projects of scientific research also in collaboration with the great Observatory that had been constructed outside Paris and to whose direction had been appointed in 1671 the famous Italian astronomer Gian Domenico Cassini (who, later on, was naturalized French and became Jean Dominique Cassini)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Richer gave a detailed account of his researches in the book Observations Astronomiques et Physiques faites en l’Isle de Caienne (Paris: Imprimerie Royale, 1679).

  2. 2.

    See the article by J. J. O’Connor and E. F. Robertson in the MacTutor History of Mathematics archive, http://www-history.mcs.st-and.ac.uk/Biographies/Richer.html.

  3. 3.

    On this see J. W. Olmsted: “The voyage of Jean Richer to Acadia in 1670: A study in the relations of Science and Navigation under Colbert” Proceedings of the American Philosophical Society 104 (1960): 612–634.

  4. 4.

    See J. W. Olmsted: “The Scientific Expedition of Jean Richer to Cayenne (1672-1673)”, Isis 34 (1942): 117–128.

  5. 5.

    J. W. Olmsted: “The Scientific Expedition”, op. cit., p. 123.

  6. 6.

    J. Richer, Observations astronomiques et Physique, op. cit. p. 66: L’une des plus considerables Observations que j’ay faites, est celle de la longueur du pendule à secondes de temps, laquelle s’est trouvée plus courte en Caïenne qu’à Paris: car la mesme mesure qui avoit esté marquée en ce lieulà sur une verge de fer suivant la longueur qui s’estoit trouvée necessaire pour faire un pendule à secondes de temps, ayant esté apportée en France, & comparée avec celle de Paris, leur difference a esté trouvée d’une ligne & un quart, dont celle de Caïenne est moindre que celle de Paris, laquelle est de 3. pieds 8. lignes \( {\raise0.7ex\hbox{$3$} \!\mathord{\left/ {\vphantom {3 5}}\right.\kern-0pt} \!\lower0.7ex\hbox{$5$}} \). Cette Observation a esté reïterée pendant dix mois entiers, où il ne s’est point passé de semaine qu’elle n’ait esté faite plusieurs fois avec beaucoup de soin. Les vibrations du pendule simple dont on se servoit estoient fort petites, & duroient fort sensibles jusques à cinquante-deux minu-tes de temps, & ont esté comparées à celles d’une horloge tres-excellente, dont les vibrations marquoient les secondes de temps (our Eng. trans.)

  7. 7.

    I. Newton, Philosophiae Naturalis Principia Mathematica (London: Jussu Societatis Regiae ac Typis Josephi Streater, 1687).

  8. 8.

    I. Newton, Philosophiae Naturalis Principia Mathematica Eq. Aur. Editio tertia aucta & emendata (London: Apud Guil. & Joh. Innys, Regiae Societatis typographos, 1726).

  9. 9.

    I. Newton, The Principia. A new Translation by I. Bernard Cohen and Anne Whitman (University of California Press, 1999), p. 829.

  10. 10.

    In the first edition, Newton quoted the names of the astronomers: Cassini and Flamsteed.

  11. 11.

    I. Newton, The Principia, op. cit., p. 821.

  12. 12.

    Actually, starting in the second edition of the Principia he made use of the more up-to-date measures obtained under the direction of Cassini in 1701. Since these measures were subsequently judged too large, in the third edition, he finally used a more accurate measure of the meridian between Dunkerque and Paris (which turned out to be different from Picard’s measure only by one toise).

  13. 13.

    Actually, in the first edition of the Principia (see 6, p. 424), Newton gives the ratio \( 1:289{\raise0.7ex\hbox{$4$} \!\mathord{\left/ {\vphantom {4 5}}\right.\kern-0pt} \!\lower0.7ex\hbox{$5$}} \), however without showing the calculations. In the successive editions, \( {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 {289}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${289}$}} \) agrees with the ratio obtained by Huygens, who had performed his calculations after having read the first edition of the Principia. We shall see further the theory and relevant calculations of Huygens. In any case the ratio \( {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 {289}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${289}$}} \cong 0.3460 \) is very close to the ratio that one can calculate today using the precise values of the magnitudes regarding the Earth. The difference begins from the third decimal figure.

  14. 14.

    J. L. Greenberg: ″Isaac Newton and the Problem of the Earth’s Shape”, Archive for History of Exact Sciences 49 (1995): 371–391, quote on p. 371.

  15. 15.

    Ibidem.

  16. 16.

    See I. Newton, The Principia, 1999, op. cit., Guide: Chap. 10, p. 350.

  17. 17.

    Traité de la Mécanique Cèleste par M. Marquis de Laplace (Paris, 1825), vol. 5, p. 9.

  18. 18.

    See: E. J. Aiton: The Vortex Theory of Planetary Motions (New York: American Elsevier Inc.: 1972).

  19. 19.

    Traité de la Lumière par C. H. D. Z. [Christian Huygens de Zulichen] Avec un Discours de la Cause de la Pesanteur (Leiden, 1690). The Discours goes from p. 125 to p. 180.

  20. 20.

    I. Todhunter: A History of the Mathematical Theories of Attraction, op. cit., p. 29.

  21. 21.

    C. Huygens, Discours de la Cause de la Pesanteur, op. cit. p. 143: Mais je trouve par ma Theorie du mouvement Circulaire, qui s’accorde parfaitement avec l’experience, qu’un corps tournant en cercle, si on veut que fon effort à s’éloigner du centre, égale justement l’effort de fa simple pesanteur, il faut qu’il faffe chaque tour en autant de temps, qu’un pendule, de la longueur du demi diametre de ce cercle, en emploie à faire deux allées. Il faut donc voir en combien de temps un pendule, de la longueur du demidiametre de la Terre, seroit ces deux allées. Ce qui est aisé par la proprieté connue des pendules, & par la longueur de celuy qui bat les Secondes, qui est de 3 pieds 8½ lignes, mesure de Paris. Et je trouve qu’il faudroit pour ces deux vibrations 1 heure 24½ minutes; en supposant, suivant l’exacte dimension de Mr. Picard, le demidiametre de la Terre de 19615800 pieds de la mesme mesure. La vitesse donc de la matiere fluide, à l’endroit de la surface de la Terre, doit estre égale à celle d’un corps qui seroit le tour de la Terre dans ce temps de 1heure, 24½ minutes. Laquelle vitesse est, à fort peu pres, 17 fois plus grande que celle d’un point sous l’Equateur, qui fait le mesme tour, à l’égard des Etoiles fixes, comme on doit le prendre icy, en 23 heures, 56 min (our Eng. trans.).

  22. 22.

    C. Huygens, Discours de la Cause de la Pesanteur, op. cit. p. 152: Partant la surface de la mer est telle, qu’en tout lieu le fil suspendu est perpendiculaire (our Eng. trans.).

  23. 23.

    I. Todhunter, A History of the Mathematical Theories of Attraction, op. cit., p. 30.

  24. 24.

    The figure is taken from S. Chandrasekhar: Ellipsoidal Figures of Equilibrium (1969); rpt. New York: Dover, 1987), p. 3.

  25. 25.

    A novel has been written on the vicissitudes of this mission; see R. Whitaker: The Mapmaker’s Wife: A True Tale of Love, Murder, and Survival in the Amazon (Basic Books, 2004).

  26. 26.

    P. L. Maupertuis, La Figure de la Terre déterminé par les Observations faites par ordre du Roi au cercle polaire – par M. De Maupertuis (Paris: Imprimerie Royale, 1738).

  27. 27.

    A. Celsius, De Observationibus Pro Figura Telluris determinanda in Gallia habitis Disquisitio. Auctore Andrea Celsio. Uppsala: Typis Höjeranis, 1738.

  28. 28.

    A. Celsius, De Observationibus, op. cit. p. 20: Spero itaque jam aequo & candido Lectori satis superque ostendisse, observationes Cassionianas tam coelestes quam terrestres, in Gallia praecipue meridionali habitas, adeo incertas esse, ut inde figura telluris nullo modo deduci queat (our Eng. trans.).

  29. 29.

    Journal d’un voyage au nord en 1736 & 1737 par M. Outhier, Prêtre du Diocèse de Besançon, correspondant de l’Académie Royale des Sciences (Paris: 1744). The book can be found reprinted in: André Balland : La Terre Mandarine. Journal d’un voyage au Nord par déterminer la figure de la Terre, par M. l’abbé Réginald Outhier (Seuil, 1994).

  30. 30.

    Jean le Rond d’Alembert , Encyclopédie, ou, Dictionnaire raisonné des sciences, des arts et des métiers, tome VI (Paris: Denis Diderot, André le Breton, Michel-Antoine David, Laurent Durand, Claude Briasson, 1756), p. 749.

  31. 31.

    A.-C. Clairaut, Théorie de la Figure de la Terre, tirée des Principes de l’Hydrostatique… (Paris: David Fils, 1743). The book was reprinted in 1808, edited by Denis Poisson. Only two translations from the French are available: (German) Theorie der Erdgestalt nach Gesetzen der Hydrostatik herausgegeben von Ph. E. B. Jourdain und A. v. Oettingen (Leipzig, 1913); (Italian) Teoria della Forma della Terra dedotta dai principi dell’Idrostatica, traduzione e note di M. Lombardini seguite da una nota di F. Enriques (Bologna: Nicola Zanichelli, 1928).

  32. 32.

    The reader can find a detailed discussion on this point (and also on the subsequent ones) in Greenberg’s The problem of the Earth Shape …, op. cit., in which about 200 pages are devoted to the Clairaut’s work. We must limit ourselves to reprising the results.

  33. 33.

    A.-C. Clairaut, Theorie de la Figure de la Terre, p. 153: Cependant M. Newton, bien loin d’avoir démontré que la terre était ou approchait d’étre un sphéroïde elliptique, n’a pas seulement affirmé qu’elle l’etait.

  34. 34.

    I. Todhunter, A History of the Mathematical Theories of Attraction, op. cit. p. 203.

  35. 35.

    I. Todhunter: A History of the Mathematical Theories of Attraction …, op. cit., vol. I, p. 229.

  36. 36.

    Actually the suggested options had been three, since the measure of the equator was also suggested, but this was immediately discarded.

  37. 37.

    J. B. J. Delambre: Grandeur e Figure de la Terre, ed. G. Bigourdan (Gauthier-Villars, 1912), pp. 204–205. In this work, published 90 years after his death, Delambre recounts incidents and makes explicit the names which he had omitted in the volumes of the Base du système métrique décimal (see infra), perhaps for the sake of peace.

  38. 38.

    The several adventures in the expedition are narrated in the novels by Denis Guedj : La Méridienne, first French edition, 1991 (English edition with the title The Measure of the World, University of Chicago Press, 2001) and by K. Adler: The Measure of All Things: The Seven-Year Odyssey and Hidden Error that Transformed the World (The Free Press, 2002).

  39. 39.

    J. B. J. Delambre: Base du Système Métric Décimal ou Mesure de L’Arc du Méridien compri entre les Parallèles de Dunkerque et Barcelone, exécutée en 1792 et Annés suivantes par mm. Méchain et Delambre, 3 vols. (Paris: Baudoin, 1806–1807–1810).

Suggested Readings

  • Chauvin, L. Histoire du Metre. D’Après les Travaux et Rapports de Delambre, Méchain, Van Swinden etc. Rpt. Forgotten Books, 2017.

    Google Scholar 

  • Diderot, D. (1754). Pensées sur l’interprétation de la nature. (Modern edition: ed. Flammarion, 2009).

    Google Scholar 

  • Hankins, T. L. (1970). Jean D’Alembert: Science and Enlightment. Oxford: Clarendon Press.

    Google Scholar 

  • Kellogg, O. D. (1929). Foundation of potential theory. Rpt. New York: Dover 1954.

    Google Scholar 

  • Laplace, P. S. (1824). Exposition du système du monde, 5th ed. Paris: Bachelier.

    Google Scholar 

  • Rossi, P. (2001). The Paolo Rossi: The birth of modern science. Blackwell.

    Google Scholar 

  • Voltaire. (1738). The elements of Sir Isaac Newton’s Philosophy translated from the French. Revised and corrected by John Hanna. London, Stephen Austen, (rpt. Gale ECCO, 2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boccaletti, D. (2019). The Shape and the Size of the Earth in the Eighteenth Century. In: The Shape and Size of the Earth. Springer, Cham. https://doi.org/10.1007/978-3-319-90593-8_5

Download citation

Publish with us

Policies and ethics