Skip to main content

Epigenetic Regulation of Intestinal Fibrosis

  • Chapter
  • First Online:
Book cover Fibrostenotic Inflammatory Bowel Disease

Abstract

Genome-wide association studies have identified over 200 risk loci associated with Inflammatory Bowel Diseases (IBD), Crohn’s disease and Ulcerative colitis. These genetic factors, however, account for only a small proportion of genetic inheritability of disease. Our understanding of the pathogenesis of IBD has evolved and currently is thought to occur through the interaction between the host genome and their intestinal microbiome and metabolome with the innate and adaptive immune responses. Genetic risk alone, however, predicts only 25% of disease indicating that other factors including the intestinal environment can shape the epigenome and also independently confer heritable risk to patients. Epigenetic modifications regulate gene expression and protein production and play critical roles in shaping the intestinal immune response, mucosal homeostasis, and the wound-healing process. Analysis of the genetic risk in patients with Crohn’s disease combined with epigenetic marks reveals regulatory mechanisms that affect gene expression and disease phenotype. This chapter will focus on what is known about the alteration in the epigenome in Crohn’s disease and the mechanisms by which epigenetic risk factors determine development of fibrosis in Crohn’s disease. Studies of the epigenome have highlighted new therapeutic targets for therapeutic intervention of the development and progression of fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rivas MA, Beaudoin M, Gardet A, et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet. 2011;43:1066–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cleynen I, Mahachie John JM, Henckaerts L, et al. Molecular reclassification of Crohn’s disease by cluster analysis of genetic variants. PLoS One. 2010;5:e12952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Essers JB, Lee JJ, Kugathasan S, et al. Established genetic risk factors do not distinguish early and later onset Crohn’s disease. Inflamm Bowel Dis. 2009;15:1508–14.

    Article  PubMed  Google Scholar 

  5. Hu P, Muise AM, Xing X, Brumell JH, Silverberg MS, Xu W. Association between a multi-locus genetic risk score and inflammatory bowel disease. Bioinform Biol Insights. 2013;7:143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang C, Haritunians T, Okou DT, et al. Characterization of genetic loci that affect susceptibility to inflammatory bowel diseases in African Americans. Gastroenterology. 2015;149:1575–86.

    Article  CAS  PubMed  Google Scholar 

  7. Liu JZ, van Sommeren S, Huang H, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47:979–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zuk O, Hechter E, Sunyaev SR, Lander ES. The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci U S A. 2012;109:1193–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Epigenetics KL. An epigenetic twist on the missing heritability of complex traits. Nat Rev Genet. 2014;15:218.

    Google Scholar 

  10. Loddo I, Romano C. Inflammatory bowel disease: genetics, epigenetics and pathogenesis. Front Immunol. 2015;6:551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2015;44:D457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li C, Iness A, Yoon J, et al. Noncanonical STAT3 activation regulates excess TGF-β1 and collagen I expression in muscle of stricturing Crohn’s disease. J Immunol. 2015;194:3422–31.

    Article  CAS  PubMed  Google Scholar 

  13. Flynn RS, Murthy KS, Grider JR, Kellum JM, Kuemmerle JF. Endogenous IGF-I and [alpha]V[beta]3 integrin ligands regulate increased smooth muscle hyperplasia in stricturing Crohn's disease. Gastroenterology. 2010;138:285–93.

    Article  CAS  PubMed  Google Scholar 

  14. Li C, Grider JR, Kuemmerle JF. 361 antagomir to microRNA-21 reverses the loss of negative TGF-signaling from inappropriately decreased Smad7 expression in Crohn's disease, and decreases excess collagen, CTGF, IGF-I and fibrosis in TNBS-induced colitis. Gastroenterology. 2012;142:S-85.

    Article  Google Scholar 

  15. Monteleone G, Del Vecchio Blanco G, Monteleone I, et al. Post-transcriptional regulation of Smad7 in the gut of patients with inflammatory bowel disease. Gastroenterology. 2005;129:1420–9.

    Article  CAS  PubMed  Google Scholar 

  16. Monteleone G, Kumberova A, Croft NM, McKenzie C, Steer HW, MacDonald TT. Blocking Smad7 restores TGF-β1 signaling in chronic inflammatory bowel disease. J Clin Invest. 2001;108:601–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meijer MJW, Mieremet-Ooms MAC, van Hogezand RA, Lamers CBHW, Hommes DW, Verspaget HW. Role of matrix metalloproteinase, tissue inhibitor of metalloproteinase and tumor necrosis factor-α single nucleotide gene polymorphisms in inflammatory bowel disease. World J Gastroenterol. 2007;13:2960–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Henckaerts L, Van Steen K, Verstreken I, et al. Genetic risk profiling and prediction of disease course in Crohn’s disease patients. Clin Gastroenterol Hepatol. 2009;7:972–80.e2.

    Article  CAS  PubMed  Google Scholar 

  19. Satsangi J, Silverberg MS, Vermeire S, Colombel J-F. The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut. 2006;55:749–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature. 2007;447:433–40.

    Article  CAS  PubMed  Google Scholar 

  21. Yang IV, Schwartz DA. Epigenetics of idiopathic pulmonary fibrosis. Transl Res. 2015;165:48–60.

    Article  CAS  PubMed  Google Scholar 

  22. Petronis A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature. 2010;465:721–7.

    Article  CAS  PubMed  Google Scholar 

  23. Trerotola M, Relli V, Simeone P, Alberti S. Epigenetic inheritance and the missing heritability. Hum Genomics. 2015;9:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zeybel M, Hardy T, Wong YK, Mathers JC, Fox CR, Gackowska A. Multigenerational epigenetic adaptation of the hepatic wound-healing response. Nat Med. 2012;18:1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krichevsky AM, Gabriely G. miR-21: a small multi-faceted RNA. J Cell Mol Med. 2009;13:39–53.

    Article  CAS  PubMed  Google Scholar 

  26. Nijhuis A, Biancheri P, Lewis A, et al. In Crohn’s disease fibrosis-reduced expression of the miR-29 family enhances collagen expression in intestinal fibroblasts. Clin Sci. 2014;127:341–50.

    Article  CAS  Google Scholar 

  27. Li C, Kuemmerle, JF. Epigenetic silencing of Smad7 contributes to fibrosis stricturing Crohn’s disease. Crohn’s & Colitis Conference, Gastroenterology. 2018;154:S17. DOI: https://doi.org/10.1053/j.gastro.2017.11.069

  28. Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. elife. 2015;Aug 12:4. DOI: https://doi.org/10.7554/eLife.05005

  29. Adams AT, Kennedy NA, Hansen R, et al. Two-stage genome-wide methylation profiling in childhood-onset Crohn’s disease implicates epigenetic alterations at the VMP1/MIR21 and HLA loci. Inflamm Bowel Dis. 2014;20:1784–93.

    Article  PubMed  Google Scholar 

  30. Fourouclas N, Li J, Gilby DC, et al. Methylation of the suppressor of cytokine signaling 3 gene (SOCS3) in myeloproliferative disorders. Haematologica. 2008;93:1635–44.

    Article  CAS  PubMed  Google Scholar 

  31. Marmorstein R, Trievel RC. Histone modifying enzymes: structures, mechanisms, and specificities. Biochim Biophys Acta. 2009;1789:58–68.

    Article  CAS  PubMed  Google Scholar 

  32. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Article  CAS  Google Scholar 

  33. Dakhlallah D, Batte K, Wang Y, et al. Epigenetic regulation of miR-17–92 contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med. 2013;187:397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu B, Gharaee-Kermani M, Wu Z, Phan SH. Epigenetic regulation of myofibroblast differentiation by DNA methylation. Am J Pathol. 2010;177:21–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Evans IC, Barnes JL, Garner IM, et al. Epigenetic regulation of cyclooxygenase-2 by methylation of c8orf4 in pulmonary fibrosis. Clin Sci. 2016;130:575–86.

    Article  CAS  Google Scholar 

  36. Coward WR, Feghali-Bostwick CA, Jenkins G, Knox AJ, Pang L. A central role for G9a and EZH2 in the epigenetic silencing of cyclooxygenase-2 in idiopathic pulmonary fibrosis. FASEB J. 2014;28:3183–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhong X, Chung ACK, Chen H-Y, Meng X-M, Lan HY. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol. 2011;22:1668–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ribas J, Ni X, Castanares M, et al. A novel source for miR-21 expression through the alternative polyadenylation of VMP1 gene transcripts. Nucleic Acids Res. 2012;40:6821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Noetel A, Kwiecinski M, Elfimova N, Huang J, Odenthal M. microRNA are central players in anti- and profibrotic gene regulation during liver fibrosis. Front Physiol. 2012;3:49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qin W, Chung ACK, Huang XR, et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol. 2011;22:1462–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ko YA, Mohtat D, Suzuki M, et al. Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biol. 2013;14:R108.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Watson CJ, Horgan S, Neary R, et al. Epigenetic therapy for the treatment of hypertension-induced cardiac hypertrophy and fibrosis. J Cardiovasc Pharmacol Ther. 2016;21:127–37.

    Article  CAS  PubMed  Google Scholar 

  43. Tzouvelekis A, Kaminski N. Epigenetics in idiopathic pulmonary fibrosis. Biochem Cell Biol. 2015;93:159–70.

    Article  CAS  PubMed  Google Scholar 

  44. Wang Z, Chen C, Finger SN, et al. Suberoylanilide hydroxamic acid: a potential epigenetic therapeutic agent for lung fibrosis? Eur Respir J. 2009;34:145–55.

    Article  CAS  PubMed  Google Scholar 

  45. Iorio MV, Piovan C, Croce CM. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta Gene Regul Mech. 2010;1799:694–701.

    Article  CAS  Google Scholar 

  46. Saini HK, Griffiths-Jones S, Enright AJ. Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci U S A. 2007;104:17719–24.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Maurer B, Stanczyk J, Jüngel A, et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 2010;62:1733–43.

    Article  CAS  PubMed  Google Scholar 

  48. Nimmo ERP, Prendergast JGP, Aldhous MCP, et al. Genome-wide methylation profiling in Crohn’s disease identifies altered epigenetic regulation of key host defense mechanisms including the Th17 pathway. Inflamm Bowel Dis. 2012;18:889–99.

    Article  PubMed  Google Scholar 

  49. Rivera CM, Ren B. Mapping human epigenomes. Cell. 2013;155. https://doi.org/10.1016/j.cell.2013.09.011.

  50. Baubec T, Colombo DF, Wirbelauer C, et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature. 2015;520:243–7.

    Article  CAS  PubMed  Google Scholar 

  51. Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hackett Jamie A, Surani MA. Beyond DNA: programming and inheritance of parental methylomes. Cell. 2013;153:737–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McDermott E, Ryan EJ, Tosetto M, et al. DNA methylation profiling in inflammatory bowel disease provides new insights into disease pathogenesis. J Crohns Colitis. 2016;10:77.

    Article  PubMed  Google Scholar 

  54. Mann DA. Epigenetics in liver disease. Hepatology. 2014;60:1418–25.

    Article  CAS  PubMed  Google Scholar 

  55. Yang IV, Pedersen BS, Rabinovich E, et al. Relationship of DNA methylation and gene expression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2014;190:1263–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Luo Y, Wang Y, Shu Y, Lu Q, Xiao R. Epigenetic mechanisms: an emerging role in pathogenesis and its therapeutic potential in systemic sclerosis. Int J Biochem Cell Biol. 2015;67:92–100.

    Article  CAS  PubMed  Google Scholar 

  57. Neary R, Watson CJ, Baugh JA. Epigenetics and the overhealing wound: the role of DNA methylation in fibrosis. Fibrogenesis Tissue Repair. 2015;8:1–13.

    Article  CAS  Google Scholar 

  58. Tao H, Yang J-J, Shi K-H, Deng Z-Y, Li J. DNA methylation in cardiac fibrosis: new advances and perspectives. Toxicology. 2014;323:125–9.

    Article  CAS  PubMed  Google Scholar 

  59. Rabinovich EI, Kapetanaki MG, Steinfeld I, et al. Global methylation patterns in idiopathic pulmonary fibrosis. PLoS One. 2012;7:e33770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sanders YY, Ambalavanan N, Halloran B, et al. Altered DNA methylation profile in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2012;186:525–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fogel O, Richard-Miceli C, Tost J. Epigenetic changes in chronic inflammatory diseases. Adv Protein Chem Struct Biol. 2017;106:139–89. ISSN 1876-1623.

    Article  CAS  PubMed  Google Scholar 

  62. Calvo-Garrido J, Carilla-Latorre S, Escalante R. Vacuole membrane protein 1, autophagy and much more. Autophagy. 2008;4(6):835–7.

    Article  PubMed  Google Scholar 

  63. Li C, Kuemmerle JF. Increased pro-fibrotic miR-21 and decreased anti-fibrotic miR-29b regulate TGF-β1 signaling, TGF-β1-dependent collagen-I expression and fibrosis in fibrostenotic (B2) Crohn’s disease. Inflamm Bowel Dis. 2014;20:2.

    Article  Google Scholar 

  64. Mariño-Ramírez L, Kann MG, Shoemaker BA, Landsman D. Histone structure and nucleosome stability. Expert Rev Proteomics. 2005;2:719–29.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell. 2007;128:707–19.

    Article  CAS  PubMed  Google Scholar 

  66. Karlic R, Chung HR, Lasserre J, Vlahovicek K, Vingron M. Histone modification levels are predictive for gene expression. Proc Natl Acad Sci U S A. 2010;107:2926–31.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sun G, Reddy MA, Yuan H, Lanting L, Kato M, Natarajan R. Epigenetic histone methylation modulates fibrotic gene expression. J Am Soc Nephrol. 2010;21(12):2069–80. https://doi.org/10.1681/ASN.2010060633. Epub 2010 Oct 7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Fernández AF, Bayón GF, Urdinguio RG, Toraño EG, García MG, Carella A, Petrus-Reurer S, Ferrero C, Martinez-Camblor P, Cubillo I, García-Castro J, Delgado-Calle J, Pérez-Campo FM, Riancho JA, Bueno C, Menéndez P, Mentink A, Mareschi K, Claire F, Fagnani C, Medda E, Toccaceli V, Brescianini S, Moran S, Esteller M, Stolzing A, de Boer J, Nisticò L, Stazi MA, Fraga MF. H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells. Genome Res. 2015;25(1):27–40. https://doi.org/10.1101/gr.169011.113. Epub 2014 Sep 30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Robertson AG, Bilenky M, Tam A, Zhao Y, Zeng T, Thiessen N, Cezard T, Fejes AP, Wederell ED, Cullum R, Euskirchen G, Krzywinski M, Birol I, Snyder M, Hoodless PA, Hirst M, Marra MA, Jones SJ. Genome-wide relationship between histone H3 lysine 4 mono- and tri-methylation and transcription factor binding. Genome Res. 2008;18(12):1906–17. https://doi.org/10.1101/gr.078519.108. Epub 2008 Sep 11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–37.

    Article  CAS  PubMed  Google Scholar 

  71. Lauberth SM, Nakayama T, Wu X, Ferris AL, Tang Z, Hughes SH, Roeder RG. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell. 2013;152(5):1021–36. https://doi.org/10.1016/j.cell.2013.01.052.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Karmodiya K, Krebs AR, Oulad-Abdelghani M, Kimura H, Tora L. H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics. 2012;13:424. https://doi.org/10.1186/1471-2164-13-424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L, Kubicek S, Chen T, Li E, Jenuwein T, Peters AH. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol. 2003;13(14):1192–200.

    Article  CAS  PubMed  Google Scholar 

  74. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 2010;107(50):21931–6. https://doi.org/10.1073/pnas.1016071107. Epub 2010 Nov 24.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kouzarides T. SnapShot: histone-modifying enzymes. Cell. 2007;131(4):822.

    Article  CAS  PubMed  Google Scholar 

  76. Rougeulle C, Chaumeil J, Sarma K, Allis CD, Reinberg D, Avner P, Heard E. Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome. Mol Cell Biol. 2004;24(12):5475–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schwartz S, Meshorer E, Ast G. Chromatin organization marks exon-intron structure. Nat Struct Mol Biol. 2009;16(9):990–5. https://doi.org/10.1038/nsmb.1659.

    Article  PubMed  CAS  Google Scholar 

  78. Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K, Zhang Y. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol. 2002;12(12):1052–8.

    Article  CAS  PubMed  Google Scholar 

  79. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet. 2008;40(7):897–903. https://doi.org/10.1038/ng.154. Epub 2008 Jun 15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Coward WR, Watts K, Feghali-Bostwick CA, Jenkins G, Pang L. Repression of IP-10 by interactions between histone deacetylation and hypermethylation in idiopathic pulmonary fibrosis. Mol Cell Biol. 2010;30:2874–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Perugorria MJ, Wilson CL, Zeybel M, et al. Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation. Hepatology. 2012;56:1129–39.

    Article  CAS  PubMed  Google Scholar 

  82. Tsaprouni LG, Ito K, Powell JJ, Adcock IM, Punchard N. Differential patterns of histone acetylation in inflammatory bowel diseases. J Inflamm. 2011;8:1.

    Article  CAS  Google Scholar 

  83. Ventham NT, Kennedy NA, Nimmo ER, Satsangi J. Beyond gene discovery in inflammatory bowel disease: the emerging role of epigenetics. Gastroenterology. 2013;145:293–308.

    Article  CAS  PubMed  Google Scholar 

  84. Mokry M, Middendorp S, Wiegerinck CL, et al. Many inflammatory bowel disease risk loci include regions that regulate gene expression in immune cells and the intestinal epithelium. Gastroenterology. 2014;146:1040–7.

    Article  CAS  PubMed  Google Scholar 

  85. Sadler T, Scarpa M, Rieder F, West G, Stylianou E. Cytokine-induced chromatin modifications of the type I collagen alpha 2 gene during intestinal endothelial-to-mesenchymal transition. Inflamm Bowel Dis. 2013;19:1354–64.

    Article  PubMed  Google Scholar 

  86. Sato F, Tsuchiya S, Meltzer SJ, Shimizu K. MicroRNAs and epigenetics. FEBS J. 2011;278:1598.

    Article  CAS  PubMed  Google Scholar 

  87. Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010;207:1589–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang Y, Huang X-R, Wei L-H, Chung ACK, Yu C-M, Lan H-Y. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-[beta]/Smad3 signaling. Mol Ther. 2014;22:974–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rehman A, Sina C, Gavrilova O, Häsler R, Ott S, Baines JF, Schreiber S, Rosenstiel P. Nod2 is essential for temporal development of intestinal microbial communities. Gut. 2011;60(10):1354–62.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang Y, Huang XR, Wei LH, Chung AC, Yu CM, Lan HY. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-β/Smad3 signaling. Mol Ther. 2014;22(5):974–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283(22):14910–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mogilyansky E, Rigoutsos I. The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 2013;20:1603–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ludwig K, Fassan M, Mescoli C, Pizzi M, Balistreri M, Albertoni L, Pucciarelli S, Scarpa M, Sturniolo GC, Angriman I, Rugge M. PDCD4/miR-21 dysregulation in inflammatory bowel disease-associated carcinogenesis. Virchows Arch. 2013;462(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  94. Yang Y, Ma Y, Shi C, Chen H, Zhang H, Chen N, Zhang P, Wang F, Yang J, Yang J, Zhu Q, Liang Y, Wu W, Gao R, Yang Z, Zou Y, Qin H. Overexpression of miR-21 in patients with ulcerative colitis impairs intestinal epithelial barrier function through targeting the Rho GTPase RhoB. Biochem Biophys Res Commun. 2013;434(4):746–52.

    Article  CAS  PubMed  Google Scholar 

  95. Seiderer J, Brand S, Herrmann KA, Schnitzler F, Hatz R, Crispin A, Pfennig S, Schoenberg SO, Göke B, Lohse P, Ochsenkuhn T. Predictive value of the CARD15 variant 1007fs for the diagnosis of intestinal stenoses and the need for surgery in Crohn’s disease in clinical practice: results of a prospective study. Inflamm Bowel Dis. 2006;12(12):1114–21.

    Article  PubMed  Google Scholar 

  96. Shi C, Liang Y, Yang J, Xia Y, Chen H, Han H, Yang Y, Wu W, Gao R, Qin H. MicroRNA-21 knockout improve the survival rate in DSS induced fatal colitis through protecting against inflammation and tissue injury. PLoS One. 2013;8(6):e66814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, Natarajan R. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A. 2007;104(9):3432–7. Epub 2007 Feb 20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I, Gunn A, Nakagawa Y, Shimano H, Todorov I, Rossi JJ, Natarajan R. TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol. 2009;11(7):881–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Josse C, Bouznad N, Geurts P, Irrthum A, Huynh-Thu VA, Servais L, Hego A, Delvenne P, Bours V, Oury C. Identification of a microRNA landscape targeting the PI3K/Akt signaling pathway in inflammation-induced colorectal carcinogenesis. Am J Physiol Gastrointest Liver Physiol. 2014;306(3):G229–43.

    Article  CAS  PubMed  Google Scholar 

  100. Pathak S, Grillo AR, Scarpa M, Brun P, D'Incà R, Nai L, Banerjee A, Cavallo D, Barzon L, Palù G, Sturniolo GC, Buda A, Castagliuolo I. MiR-155 modulates the inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in ulcerative colitis. Exp Mol Med. 2015;47:e164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pothoulakis C, Iliopoulos D, Rankin R, Padua D. P-307 the long non-coding RNA, CDKN2B-AS1, is associated with IBD and is downregulated by TGF-beta. Inflamm Bowel Dis. 2017. https://doi.org/10.1097/01.MIB.0000512848.22206.04.

  102. Wu F, Zikusoka M, Trindade A, Dassopoulos T, Harris ML, Bayless TM, Brant SR, Chakravarti S, Kwon JH. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology. 2008;135(5):1624–1635.e24.

    Article  CAS  PubMed  Google Scholar 

  103. Mirza AH, Berthelsen CH, Seemann SE, Pan X, Frederiksen KS, Vilien M, Gorodkin J, Pociot F. Transcriptomic landscape of lncRNAs in inflammatory bowel disease. Genome Med. 2015;7(1):39. https://doi.org/10.1186/s13073-015-0162-2. eCollection 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Hrdlickova B, Kumar V, Kanduri K, Zhernakova DV, Tripathi S, Karjalainen J, Lund RJ, Li Y, Ullah U, Modderman R, Abdulahad W, Lähdesmäki H, Franke L, Lahesmaa R, Wijmenga C, Withoff S. Expression profiles of long non-coding RNAs located in autoimmune disease-associated regions reveal immune cell-type specificity. Genome Med. 2014;6(10):88. https://doi.org/10.1186/s13073-014-0088-0. eCollection 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Xie H, Xue DJ, Chao F, Jin YF, Fu Q. Long non-coding RNA-H19 antagonism protects against renal fibrosis. Oncotarget. 2016;7(32):51473–81.

    PubMed  PubMed Central  Google Scholar 

  106. Micheletti R, Plaisance I, Abraham BJ, Sarre A, Ting CC, Alexanian M, Maric D, Maison D, Nemir M, Young RA, Schroen B, González A, Ounzain S, Pedrazzini T. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci Transl Med. 2017;9(395):eaai9118. https://doi.org/10.1126/scitranslmed.aai9118.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Supported by DK49691 from NIH: National Institutes for Diabetes, Digestive and Kidney Diseases (JFK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Kuemmerle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, C., Kuemmerle, J.F. (2018). Epigenetic Regulation of Intestinal Fibrosis. In: Rieder, F. (eds) Fibrostenotic Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-90578-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90578-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90577-8

  • Online ISBN: 978-3-319-90578-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics