Skip to main content

Clinical, Cellular and Serologic Biomarkers of Intestinal Fibrosis

  • Chapter
  • First Online:
Fibrostenotic Inflammatory Bowel Disease

Abstract

Intestinal fibrosis, which is due to an exaggerated accumulation of extracellular matrix, is a frequent complication of inflammatory bowel disease (IBD) leading to intestinal obstruction and need for surgery. Currently, there are no biomarkers able to predict the development of intestinal fibrosis in patients with inflammatory bowel disease. Most of the candidate biomarkers, including clinical factors (i.e. smoking, ileal location, early use of steroids), circulating cells (i.e. fibrocytes), serum extracellular matrix components (i.e. collagen, fibronectin) or enzymes (i.e. tissue inhibitor of matrix metalloproteinase-1), serum growth factors (i.e. basic fibroblast growth factor, YKL-40) and serum antimicrobial antibodies (i.e. anti-Saccharomyces cerevisiae antibodies ASCA), have been shown to predict a disabling disease course rather than a fibrostenosing phenotype. In this chapter we critically review clinical, cellular and serological biomarkers of intestinal fibrosis in inflammatory bowel disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACCA:

Anti-chitobioside carbohydrate antibody

ALCA:

Anti-laminaribioside IgG antibody

AMCA:

Anti-mannobioside carbohydrate antibody

anti-C:

Anti-chitin carbohydrate antibody

anti-CBir1:

Anti-bacterial flagellin CBir1 antibody

anti-I2:

Anti-Pseudomonas-associated sequence I2 antibody

anti-L:

Anti-laminarin carbohydrate antibody

anti-OmpC:

Anti-Escherichia coli outer membrane protein C antibody

ASCA:

Anti-Saccharomyces cerevisiae antibody

bFGF:

Basic fibroblast growth factor

CD:

Crohn’s disease

ECM:

Extracellular matrix

ELF:

Enhanced liver fibrosis

FAP:

Fibroblast activation protein

IBD:

Inflammatory bowel disease

MMP:

Matrix metalloproteinase

PDGF:

Platelet-derived growth factor

PIIINP:

N-terminal propeptide of type III collagen

TGF:

Transforming growth factor

TIMP:

Tissue inhibitor of matrix metalloproteinases

TNF:

Tumor necrosis factor

UC:

Ulcerative colitis

VEGF:

Vascular endothelial growth factor

References

  1. Giuffrida P, Pinzani M, Corazza GR, et al. Biomarkers of intestinal fibrosis - one step towards clinical trials for stricturing inflammatory bowel disease. United European Gastroenterol J. 2016;4:523–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rieder F, de Bruyn JR, Pham BT, et al. Results of the 4th scientific workshop of the ECCO (Group II): markers of intestinal fibrosis in inflammatory bowel disease. J Crohns Colitis. 2014;8:1166–78.

    Article  PubMed  Google Scholar 

  3. Rieder F, Lawrance IC, Leite A, et al. Predictors of fibrostenotic Crohn’s disease. Inflamm Bowel Dis. 2011;17:2000–7.

    Article  PubMed  Google Scholar 

  4. Beaugerie L, Seksik P, Nion-Larmurier I, et al. Predictors of Crohn’s disease. Gastroenterology. 2006;130:650–6.

    Article  PubMed  Google Scholar 

  5. Lichtenstein GR, Olson A, Travers S, et al. Factors associated with the development of intestinal strictures or obstructions in patients with Crohn’s disease. Am J Gastroenterol. 2006;101:1030–8.

    Article  PubMed  Google Scholar 

  6. Moeller A, Gilpin SE, Ask K, et al. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2009;179:588–94.

    Article  PubMed  Google Scholar 

  7. Sazuka S, Katsuno T, Nakagawa T, et al. Fibrocytes are involved in inflammation as well as fibrosis in the pathogenesis of Crohn’s disease. Dig Dis Sci. 2014;59:760–8.

    Article  CAS  PubMed  Google Scholar 

  8. De Simone M, Ciulla MM, Cioffi U, et al. Effects of surgery on peripheral N-terminal propeptide of type III procollagen in patients with Crohn’s disease. J Gastrointest Surg. 2007;11:1361–4.

    Article  PubMed  Google Scholar 

  9. Kjeldsen J, Schaffalitzky de Muckadell OB, et al. Seromarkers of collagen I and III metabolism in active Crohn’s disease. Relation to disease activity and response to therapy. Gut. 1995;37:805–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Di Sabatino A, Jackson CL, Pickard KM, et al. Transforming growth factor beta signalling and matrix metalloproteinases in the mucosa overlying Crohn’s disease strictures. Gut. 2009;58:777–89.

    Article  PubMed  Google Scholar 

  11. Kapsoritakis AN, Kapsoritaki AI, Davidi IP, et al. Imbalance of tissue inhibitors of metalloproteinases (TIMP) - 1 and - 4 serum levels, in patients with inflammatory bowel disease. BMC Gastroenterol. 2008;8:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rosenberg WM, Voelker M, Thiel R, et al. Serum markers detect the presence of liver fibrosis: a cohort study. Gastroenterology. 2004;127:1704–13.

    Article  PubMed  Google Scholar 

  13. Vesterhus M, Hov JR, Holm A, et al. Enhanced liver fibrosis score predicts transplant-free survival in primary sclerosing cholangitis. Hepatology. 2015;62:188–97.

    Article  PubMed  Google Scholar 

  14. Koutroubakis IE, Petinaki E, Dimoulios P, et al. Serum laminin and collagen IV in inflammatory bowel disease. J Clin Pathol. 2003;56:817–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Verspaget HW, Biemond I, Allaart CF, et al. Assessment of plasma fibronectin in Crohn’s disease. Hepatogastroenterology. 1991;38:231–4.

    PubMed  CAS  Google Scholar 

  16. Allan A, Wyke J, Allan RN, et al. Plasma fibronectin in Crohn’s disease. Gut. 1989;30:627–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Giuffrida P, Biancheri P, MacDonald TT. Proteases and small intestinal barrier function in health and disease. Curr Opin Gastroenterol. 2014;30:147–53.

    Article  CAS  PubMed  Google Scholar 

  18. Vassiliadis E, Oliveira CP, Alvares-da-Silva MR, et al. Circulating levels of citrullinated and MMP-degraded vimentin [VICM] in liver fibrosis related pathology. Am J Transl Res. 2012;4:403–14.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Vassiliadis E, Veidal SS, Barascuk N, et al. Measurement of matrix metalloproteinase 9-mediated collagen type III degradation fragment as a marker of skin fibrosis. BMC Dermatol. 2011;11:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Veidal SS, Karsdal MA, Nawrocki A, et al. Assessment of proteolytic degradation of the basement membrane: a fragment of type IV collagen as a biochemical marker for liver fibrosis. Fibrogenesis Tissue Repair. 2011;4:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mortensen JH, Godskesen LE, Jensen MD, et al. Fragments of citrullinated and MMP-degraded vimentin and MMP-degraded type III collagen are novel serological biomarkers to differentiate Crohn’s disease from ulcerative colitis. J Crohns Colitis. 2015;9:863–72.

    Article  PubMed  Google Scholar 

  22. Mortensen JH, Manon-Jensen T, Jensen MD, et al. Ulcerative colitis, Crohn’s disease, and irritable bowel syndrome have different profiles of extracellular matrix turnover, which also reflects disease activity in Crohn’s disease. PLoS One. 2017;12:e0185855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bousvaros A, Zurakowski D, Fishman SJ, et al. Serum basic fibroblast growth factor in pediatric Crohn’s disease. Implications for wound healing. Dig Dis Sci. 1997;42:378–86.

    Article  CAS  PubMed  Google Scholar 

  24. Di Sabatino A, Ciccocioppo R, Benazzato L, et al. Infliximab downregulates basic fibroblast growth factor and vascular endothelial growth factor in Crohn’s disease patients. Aliment Pharmacol Ther. 2004;19:1019–24.

    Article  CAS  PubMed  Google Scholar 

  25. Di Sabatino A, Ciccocioppo R, Armellini E, et al. Serum bFGF and VEGF correlate respectively with bowel wall thickness and intramural blood flow in Crohn’s disease. Inflamm Bowel Dis. 2004;10:573–7.

    Article  PubMed  Google Scholar 

  26. Koutroubakis IE, Petinaki E, Dimoulios P, et al. Increased serum levels of YKL-40 in patients with inflammatory bowel disease. Int J Colorectal Dis. 2003;18:254–9.

    PubMed  Google Scholar 

  27. Erzin Y, Uzun H, Karatas A, et al. Serum YKL-40 as a marker of disease activity and stricture formation in patients with Crohn’s disease. J Gastroenterol Hepatol. 2008;23:e357–62.

    Article  CAS  PubMed  Google Scholar 

  28. Pinzani M. Fibrosis in the GI tract: pathophysiology, diagnosis and treatment options. In: Mayerle J, Tilg H, editors. Clinical update on inflammatory disorders of the gastrointestinal tract, Frontiers of gastrointestinal research. Basel: Karger; 2010. p. 15–31.

    Google Scholar 

  29. Matusiewicz M, Neubauer K, Mierzchala-Pasierb M, et al. Matrix metalloproteinase-9: its interplay with angiogenic factors in inflammatory bowel diseases. Dis Markers. 2014;2014:643645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dotan I, Fishman S, Dgani Y, et al. Antibodies against laminaribioside and chitobioside are novel serologic markers in Crohn’s disease. Gastroenterology. 2006;131:366–78.

    Article  CAS  PubMed  Google Scholar 

  31. Arnott ID, Landers CJ, Nimmo EJ, et al. Sero-reactivity to microbial components in Crohn’s disease is associated with disease severity and progression, but not NOD2/CARD15 genotype. Am J Gastroenterol. 2004;99:2376–84.

    Article  PubMed  Google Scholar 

  32. Reumaux D, Sendid B, Poulain D, et al. Serological markers in inflammatory bowel diseases. Best Pract Res Clin Gastroenterol. 2003;17:19–35.

    Article  CAS  PubMed  Google Scholar 

  33. Rieder F, Schleder S, Wolf A, et al. Serum anti-glycan antibodies predict complicated Crohn’s disease behavior: a cohort study. Inflamm Bowel Dis. 2010;16:1367–75.

    Article  PubMed  Google Scholar 

  34. van Schaik FD, Oldenburg B, Hart AR, et al. Serological markers predict inflammatory bowel disease years before the diagnosis. Gut. 2013;62:683–8.

    Article  CAS  PubMed  Google Scholar 

  35. Paul S, Boschetti G, Rinaudo-Gaujous M, et al. Association of anti-glycan antibodies and inflammatory bowel disease course. J Crohns Colitis. 2015;9:445–51.

    Article  CAS  PubMed  Google Scholar 

  36. Kaul A, Hutfless S, Liu L, et al. Serum anti-glycan antibody biomarkers for inflammatory bowel disease diagnosis and progression: a systematic review and meta-analysis. Inflamm Bowel Dis. 2012;18:1872–84.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang Z, Li C, Zhao X, et al. Anti-Saccharomyces cerevisiae antibodies associate with phenotypes and higher risk for surgery in Crohn’s disease: a meta-analysis. Dig Dis Sci. 2012;57:2944–54.

    Article  PubMed  Google Scholar 

  38. Rieder F, Dirmeier A, Strauch U, et al. Association of the novel serologic anti-glycan antibodies anti-laminarin and anti-chitin with complicated Crohn’s disease behavior. Inflamm Bowel Dis. 2010;16:263–74.

    Article  PubMed  Google Scholar 

  39. Dubinsky MC, Lin YC, Dutridge D, et al. Serum immune responses predict rapid disease progression among children with Crohn’s disease: immune responses predict disease progression. Am J Gastroenterol. 2006;101:360–7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dubinsky MC, Kugathasan S, Mei L, et al. Increased immune reactivity predicts aggressive complicating Crohn’s disease in children. Clin Gastroenterol Hepatol. 2008;6:1105–11.

    Article  PubMed  PubMed Central  Google Scholar 

  41. O’Donnell S, O’Sullivan M, O’Morain CA, et al. The clinical significance of antimicrobial serologic responses within an Irish Crohn’s disease population. Eur J Gastroenterol Hepatol. 2013;25:1464–9.

    Article  CAS  PubMed  Google Scholar 

  42. Ryan JD, Silverberg MS, Xu W, et al. Predicting complicated Crohn’s disease and surgery: phenotypes, genetics, serology and psychological characteristics of a population-based cohort. Aliment Pharmacol Ther. 2013;38:274–83.

    Article  CAS  PubMed  Google Scholar 

  43. Xiong Y, Wang GZ, Zhou JQ, et al. Serum antibodies to microbial antigens for Crohn’s disease progression: a meta-analysis. Eur J Gastroenterol Hepatol. 2014;26:733–42.

    Article  CAS  PubMed  Google Scholar 

  44. Acharya PS, Zukas A, Chandan V, et al. Fibroblast activation protein: a serine protease expressed at the remodeling interface in idiopathic pulmonary fibrosis. Hum Pathol. 2006;37:352–60.

    Article  CAS  PubMed  Google Scholar 

  45. Levy MT, McCaughan GW, Abbott CA, et al. Fibroblast activation protein: a cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis. Hepatology. 1999;29:1768–78.

    Article  CAS  PubMed  Google Scholar 

  46. Williams KH, Viera de Ribeiro AJ, Prakoso E, et al. Lower serum fibroblast activation protein shows promise in the exclusion of clinically significant liver fibrosis due to non-alcoholic fatty liver disease in diabetes and obesity. Diabetes Res Clin Pract. 2015;108:466–72.

    Article  CAS  PubMed  Google Scholar 

  47. Rovedatti L, Di Sabatino A, Knowles CH, et al. Fibroblast activation protein expression in Crohn’s disease strictures. Inflamm Bowel Dis. 2011;17:1251–3.

    Article  PubMed  Google Scholar 

  48. Truffi M, Sorrentino L, Monieri M, et al. Inhibition of fibroblast activation protein restores a balanced extracellular matrix and reduces fibrosis in Crohn’s disease strictures ex vivo. Inflamm Bowel Dis. 2018;24(2):332–45.

    Article  PubMed  Google Scholar 

  49. Cosnes J, Cattan S, Blain A, et al. Long-term evolution of disease behavior of Crohn’s disease. Inflamm Bowel Dis. 2002;8:244–50.

    Article  PubMed  Google Scholar 

  50. Zorzi F, Calabrese E, Monteleone I, et al. A phase 1 open-label trial shows that smad7 antisense oligonucleotide (GED0301) does not increase the risk of small bowel strictures in Crohn’s disease. Aliment Pharmacol Ther. 2012;36:850–7.

    Article  CAS  PubMed  Google Scholar 

  51. Biancheri P, Giuffrida P, Docena GH, et al. The role of transforming growth factor (TGF)-β in modulating the immune response and fibrogenesis in the gut. Cytokine Growth Factor Rev. 2014;25:45–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Di Sabatino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Sabatino, A., Giuffrida, P. (2018). Clinical, Cellular and Serologic Biomarkers of Intestinal Fibrosis. In: Rieder, F. (eds) Fibrostenotic Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-90578-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90578-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90577-8

  • Online ISBN: 978-3-319-90578-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics