Skip to main content

Basics for P.D.E. Systems

  • Chapter
  • First Online:
  • 551 Accesses

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 91))

Abstract

The main object in this chapter is the stress-energy tensor, which is an algebraic fact implying several useful identities like the (weak) monotonicity formula, Gui’s Hamiltonian identities, and Pohozaev’ identities, for all solutions and all potentials W ≥ 0. Modica’s inequality holds in the scalar case and implies a strong monotonicity formula, but is not generally valid in the vector case. The triple junction on the plane is also introduced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alikakos, N.D.: Some basic facts on the system Δu −∇W(u) = 0. Proc. Am. Math. Soc. 139, 153–162 (2011)

    Google Scholar 

  2. Alikakos, N.D.: On the structure of phase transition maps for three or more coexisting phases. In: Chambolle, A., Novaga, M., Valdinoci, E. (eds.) Geometry and Partial Differential Equations, Proceedings, CRM series. Edizioni della Normale, Pisa (2013)

    Google Scholar 

  3. Alikakos, N.D., Faliagas, A.: The stress-energy tensor and Pohozaev’s identity for systems. Acta Math. Sci. 32(1), 433–439 (2012)

    Article  MathSciNet  Google Scholar 

  4. Alikakos, N.D., Antonopoulos, P., Damialis, A.: Plateau angle conditions for the vector-valued Allen–Cahn equation. SIAM J. Math. Anal. 45(6), 3823–3837 (2013)

    Article  MathSciNet  Google Scholar 

  5. Berestycki, H., Terracini, S., Wang, K., Wei, J.: On entire solutions of an elliptic system modeling phase transitiona. arxiv: 1204.1038

    Google Scholar 

  6. Bethuel, F., Brezis, H., Helein, F.: Ginzburg-Landau vortices. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 13. Birkhäuser, Basel (1994)

    Google Scholar 

  7. Bronsard, L., Reitich, F.: On three-phase boundary motion and the singular limit of a vector-valued Ginzburg–Landau equation. Arch. Ration. Mech. Anal. 124(4), 355–379 (1993)

    Article  MathSciNet  Google Scholar 

  8. Bronsard, L., Gui, C., Schatzman, M.: A three-layered minimizer in \({\mathbb R}^2\) for a variational problem with a symmetric three-well potential. Commun. Pure Appl. Math. 49(7), 677–715 (1996)

    Google Scholar 

  9. Caffarelli, L., Lin, F.H.: Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. J. Am. Math. Soc. 21(3), 847–862 (2008)

    Article  MathSciNet  Google Scholar 

  10. Caffarelli, L., Garofalo, N., Segala, F.: A Gradient bound for entire solutions of quasi-linear equations and its consequences. Commun. Pure Appl. Math. 47(11), 1457–1473 (1994)

    Article  MathSciNet  Google Scholar 

  11. Caffarelli, L., Karakhanyan, A.L., Lin, F.H.: The geometry of solutions to a segregation problem for nondivergence systems. J. Fixed Point Theory Appl. 5, 319–351 (2009)

    Article  MathSciNet  Google Scholar 

  12. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  13. Faliagas, A.C.: On the equivalence of Euler-Lagrange and Noether equations. Math. Phys. Anal. Geom. 19, 1 (2016). https://doi.org/10.1007/s11040-016-9203-3

    Article  MathSciNet  Google Scholar 

  14. Farina, A.: Finite-energy solutions, quantization effects and Liouville-type results for a variant of the Ginzburg–Landau systems in \({\mathbb R}^K\). C. R. Acad. Sci. Paris Ser. I Math. 325(5), 487–491 (1997)

    Google Scholar 

  15. Farina, A.: Two results on entire solutions of Ginzburg–Landau system in higher dimensions. J. Funct. Anal. 214(2), 386–395 (2004)

    Article  MathSciNet  Google Scholar 

  16. Farina, A.: Some symmetry results for entire solutions of an elliptic system arising in phase separation. Discrete Contin. Dynam. Syst. 34(6), 2505–2511 (2014)

    Article  MathSciNet  Google Scholar 

  17. Farina, A., Valdinoci, E.: The state of art for a conjecture of De Giorgi and related questions. In: Reaction-Diffusion Systems and Viscosity Solutions. World Scientific, Singapore (2008)

    Google Scholar 

  18. Farina, A., Valdinoci, E.: A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature. Adv. Math. 225, 2808–2827 (2010)

    Article  MathSciNet  Google Scholar 

  19. Farina, A., Sciunzi, B., Valdinoci, E.: Bernstein and De Giorgi type problems: new results via a geometric approach. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5(7), 741–791 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Giaquinta, M., Hildebrandt, S.: Calculus of Variations I. The Lagrangian Formalism. Grundlehren der mathematischen Wissenschaften, vol. 310. Springer, Berlin (2010)

    Google Scholar 

  21. Gui, C.: Hamiltonian identities for partial differential equations. J. Funct. Anal. 254(4), 904–933 (2008)

    Article  MathSciNet  Google Scholar 

  22. Gui, C., Malchiodi, A., Xu, H.: Axial symmetry of some steady state solutions to nonlinear Schrodinger equations. Proc. Am. Math. Soc. 139, 1023–1032 (2011)

    Article  MathSciNet  Google Scholar 

  23. Hagan, P.S.: Spiral waves in reaction-diffusion equations. SIAM J. Appl. Math. 42(4), 762–786 (1982)

    Article  MathSciNet  Google Scholar 

  24. Ilmanen, T.: Convergence of the Allen–Cahn equation to Brakke’s motion by mean curvature. J. Differ. Geom. 38(2), 417–461 (1993)

    Article  MathSciNet  Google Scholar 

  25. Landau, L.D., Lifschitz, E.M.: Course of Theoretical Physics. Classical Field Theory, vol. 2, 4th edn. Butterworth-Heinemann, Oxford (1980)

    Chapter  Google Scholar 

  26. Mironescu, P.: Local minimizers for the Ginzburg-Landau equation are radially symmetric. C. R. Acad. Sci. Paris Sér. I Math. 323, 593–598 (1996)

    MathSciNet  MATH  Google Scholar 

  27. Modica, L.: Monotonicity of the energy for entire solutions of semilinear elliptic equations. In: Colombini, F., Marino, A., Modica, L. (eds.) Partial differential equations and the calculus of variations. Essays in honor of Ennio De Giorgi, vol. 2, pp. 843–850. Birkhäuser, Boston (1989)

    Google Scholar 

  28. Modica, L.: A Gradient bound and a Liouville Theorem for nonlinear Poisson equations. Commun. Pure Appl. Math. 38(5), 679–684 (1985)

    Article  MathSciNet  Google Scholar 

  29. Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg-Landau Model. Progress in Nonlinear Differential Equations and Their Applications, vol. 70. Birkhäuser, Boston (2007)

    Google Scholar 

  30. Schoen, R.: Lecture Notes on General Relativity. Stanford University, Stanford (2009)

    Google Scholar 

  31. Simon, L.: Lectures on Geometric Measure Theory. In: Proceedings of the Centre for Mathematics and Its Applications, vol. 3. Australian National University, Canberra (1984)

    Google Scholar 

  32. Smyrnelis, P.: Gradient estimates for semilinear elliptic systems and other related results. Proc. R. Soc. Edinb. Sect. A 145(6), 1313–1330 (2015)

    Article  MathSciNet  Google Scholar 

  33. Sperb, R.: Maximum Principles and Their Applications. Mathematics in Science and Engineering, vol. 157. Academic Press, New York (1981)

    Google Scholar 

  34. Struwe, M.: Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. A Series of Modern Surveys in Mathematics, vol. 34, 4th edn. Springer, Berlin (2008)

    Google Scholar 

  35. White, B.: Existence of least energy configurations of immiscible fluids. J. Geom. Anal. 6, 151–161 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alikakos, N.D., Fusco, G., Smyrnelis, P. (2018). Basics for P.D.E. Systems. In: Elliptic Systems of Phase Transition Type. Progress in Nonlinear Differential Equations and Their Applications, vol 91. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-90572-3_3

Download citation

Publish with us

Policies and ethics