Skip to main content

Clinical Implementation of High-Throughput Sequencing

  • Chapter
  • First Online:
The Gut Microbiome in Health and Disease

Abstract

Rapid advances in high-throughput sequencing-based technologies and computational tools have opened up entirely new strategies for extensively characterizing the microbial ecology of human body habitats, independent of laboratory cultivation. Several large-scale seminal studies have revealed that various human diseases are closely associated with compositional changes in the intestinal microbiota. However, the causal connection between these microbial imbalances and clinical symptomology and the underlying pathophysiological mechanisms of microbial-host interactions are still essentially unknown for many pathologies. The transfer of findings from basic biomedical research into clinical application is one of the major challenges in microbiome research and is impeded by large interindividual variations and the lack of knowledge about potential confounding factors such as diet or host and environmental influences. Clinical application of microbiome analyses requires a diligent implementation of quality-controlled standardized wet lab and bioinformatic protocols, as well as continuous quality monitoring and accreditation in addition to well-controlled cohort studies. Furthermore, additional tools for the functional analysis of microbiome signatures are needed. Only if these conditions are met can high-throughput sequencing-based quantitative metagenomics be successfully applied as a prognostic tool in clinical practice or for improving the development of individualized therapies based on microbiota profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bahl, M. I., Laursen, M. F., & Dalgaard, M. D. (2017). Genomic GC-content affects the accuracy of 16S rRNA gene sequencing based microbial profiling due to PCR bias. Frontiers in Microbiology, 8, 1–8.

    Google Scholar 

  • Barb, J. J., Oler, A. J., Kim, H. S., Chalmers, N., Wallen, G. R., Cashion, A., et al. (2016). Development of an analysis pipeline characterizing multiple hypervariable regions of 16S rRNA using mock samples. PLoS One, 11, 1–18.

    Article  CAS  Google Scholar 

  • Benitez-Paez, A., Portune, K., & Sanz, Y. (2015). Species-level resolution of 16S rRNA gene amplicons sequenced through MinIONTM portable nanopore sequencer. Gigascience, 5, 4.

    Article  CAS  Google Scholar 

  • Burke, C. M., & Darling, A. E. (2016). A method for high precision sequencing of near full-length 16S rRNA genes on an Illumina MiSeq. PeerJ, 4, e2492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callahan, B. J., McMurdie, P. J., & Holmes, S. P. (2017). Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME Journal, 11, 2639–2643.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choo, J. M., Leong, L. E. X., & Rogers, G. B. (2015). Sample storage conditions significantly influence faecal microbiome profiles. Scientific Reports, 5, 16350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costea, P. I., Zeller, G., Sunagawa, S., Pelletier, E., Alberti, A., Levenez, F., et al. (2017). Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnology, 35, 1069–1076.

    CAS  Google Scholar 

  • Davido, B., Batista, R., Michelon, H., Lepainteur, M., Bouchand, F., Lepeule, R., et al. (2017). Is faecal microbiota transplantation an option to eradicate highly drug-resistant enteric bacteria carriage? The Journal of Hospital Infection, 95, 433–437.

    Article  CAS  PubMed  Google Scholar 

  • Donaldson, G. P., Lee, S. M., & Mazmanian, S. K. (2015). Gut biogeography of the bacterial microbiota. Nature Reviews. Microbiology, 14, 20–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duvallet, C., Gibbons, S. M., Gurry, T., Irizarry, R. A., & Alm, E. J. (2017). Meta-analysis of gut microbiome studies identifies diseasespecific and shared responses. Nature Communications, 8, 1784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., et al. (2015). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 528, 262–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fouhy, F., Clooney, A. G., Stanton, C., Claesson, M. J., & Cotter, P. D. (2016). 16S rRNA gene sequencing of mock microbial populations- impact of DNA extraction method, primer choice and sequencing platform. BMC Microbiology, 16, 123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franzosa, E. A., Morgan, X. C., Segata, N., Waldron, L., Reyes, J., Earl, A. M., et al. (2014). Relating the metatranscriptome and metagenome of the human gut. Proceedings of the National Academy of Sciences of the United States of America, 111, E2329–E2338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gagan, J., & Van Allen, E. M. (2015). Next-generation sequencing to guide cancer therapy. Genome Medicine, 7, 80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., & Egozcue, J. J. (2017). Microbiome datasets are compositional: And this is not optional. Frontiers in Microbiology, 8, 2224.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gohl, D. M., Vangay, P., Garbe, J., MacLean, A., Hauge, A., Becker, A., et al. (2016). Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nature Biotechnology, 34, 942–949.

    Article  CAS  PubMed  Google Scholar 

  • Hiergeist, A., Gläsner, J., Reischl, U., & Gessner, A. (2015). Analyses of intestinal microbiota: Culture versus sequencing. ILAR Journal, 56, 228–240.

    Article  CAS  PubMed  Google Scholar 

  • Hiergeist, A., Reischl, U., Priority Program 1656 Intestinal Microbiota Consortium/Quality Assessment Participants, & Gessner, A. (2016). Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability. International Journal of Medical Microbiology, 306, 334–342.

    Article  CAS  Google Scholar 

  • Jones, M. B., Highlander, S. K., Anderson, E. L., Li, W., Dayrit, M., Klitgord, N., et al. (2015). Library preparation methodology can influence genomic and functional predictions in human microbiome research. Proceedings of the National Academy of Sciences of the United States of America, 112, 14024–14029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearney, S. M., Gibbons, S. M., Poyet, M., Gurry, T., Bullock, K., Allegretti, J., et al. (2017). Endospores and other lysisresistant bacteria comprise a widely shared core community within the human microbiota. BioRxiv, 221713.

    Google Scholar 

  • Kim, H. J., Huh, D., Hamilton, G., & Ingber, D. E. (2012). Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab on a Chip, 12, 2165.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D., Hofstaedter, C. E., Zhao, C., Mattei, L., Tanes, C., Clarke, E., et al. (2017). Optimizing methods and dodging pitfalls in microbiome research. Microbiome, 5, 52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., et al. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41, e1.

    Article  CAS  PubMed  Google Scholar 

  • Koppel, N., Maini Rekdal, V., & Balskus, E. P. (2017). Chemical transformation of xenobiotics by the human gut microbiota. Science, 356, eaag2770.

    Article  CAS  PubMed  Google Scholar 

  • Lagier, J. C., Armougom, F., Million, M., Hugon, P., Pagnier, I., Robert, C., et al. (2012). Microbial culturomics: Paradigm shift in the human gut microbiome study. Clinical Microbiology and Infection, 18, 1185–1193.

    Article  CAS  PubMed  Google Scholar 

  • Lagkouvardos, I., Joseph, D., Kapfhammer, M., Giritli, S., Horn, M., Haller, D., et al. (2016). IMNGS: A comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Scientific Reports, 6, 33721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leclercq, S., Mian, F. M., Stanisz, A. M., Bindels, L. B., Cambier, E., Ben-Amram, H., et al. (2017). Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nature Communications, 8, 15062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S. T. M., Kahn, S. A., Delmont, T. O., Shaiber, A., Esen, ö. C., Hubert, N. A., et al. (2017). Tracking microbial colonization in fecal microbiota transplantation experiments via genome-resolved metagenomics. Microbiome, 5.

    Google Scholar 

  • Leinonen, R., Sugawara, H., & Shumway, M. (2011). The sequence read archive. Nucleic Acids Research, 39.

    Google Scholar 

  • Maurice, C. F., Haiser, H. J., & Turnbaugh, P. J. (2013). Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell, 152, 39–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molly, K., Vande Woestyne, M., & Verstraete, W. (1993). Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Applied Microbiology and Biotechnology, 39, 254–258.

    Article  CAS  PubMed  Google Scholar 

  • Neville, B. A., Forster, S. C., & Lawley, T. D. (2018). Commensal Koch’s postulates: Establishing causation in human microbiota research. Current Opinion in Microbiology, 42, 47–52.

    Article  PubMed  Google Scholar 

  • Nguyen, T. L. A., Vieira-Silva, S., Liston, A., & Raes, J. (2015). How informative is the mouse for human gut microbiota research? Disease Models and Mechanisms, 8, 1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen, H. B., Almeida, M., Juncker, A. S., Rasmussen, S., Li, J., Sunagawa, S., et al. (2014). Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nature Biotechnology, 32, 822–828.

    Article  CAS  PubMed  Google Scholar 

  • Raju, S., Ellonen, P., De Vos, W. M., Eriksson, J. G., Weiderpass, E., Rounge, T. B., et al. (2018). Reproducibility and repeatability of six high-throughput 16S rDNA sequencing protocols for microbiota profiling. J Microbiol Methods, 147, 76–86.

    Article  CAS  PubMed  Google Scholar 

  • Santiago, A., Panda, S., Mengels, G., Martinez, X., Azpiroz, F., Dore, J., et al. (2014). Processing faecal samples: A step forward for standards in microbial community analysis. BMC Microbiology, 14, 112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schirmer, M., Ijaz, U. Z., D’Amore, R., Hall, N., Sloan, W. T., & Quince, C. (2015). Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Research, 43, e37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha, R., Abu-Ali, G., Vogtmann, E., Fodor, A.A., Ren, B., Amir, A., et al., Microbiome Quality Control Project Consortium. (2017). Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nature Biotechnology, 35, 1077–1086.

    Google Scholar 

  • Song, S. J., Amir, A., Metcalf, J. L., Amato, K. R., Xu, Z. Z., Humphrey, G., et al. (2016). Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems, 1, e00021-16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stämmler, F., Gläsner, J., Hiergeist, A., Holler, E., Weber, D., Oefner, P. J., et al. (2016). Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome, 4, 28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Surana, N. K., & Kasper, D. L. (2017). Moving beyond microbiome-wide associations to causal microbe identification. Nature, 552(7684), 244–247.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Taur, Y., & Pamer, E. G. (2014). Harnessing microbiota to kill a pathogen: Fixing the microbiota to treat Clostridium difficile infections. Nature Medicine, 20, 246–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaiss, C. A., Levy, M., Korem, T., DohnalovĂ¡, L., Shapiro, H., Jaitin, D. A., et al. (2016). Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell, 167, 1495–1510.e12.

    Article  CAS  PubMed  Google Scholar 

  • VelĂ¡squez-MejĂ­a, E. P., de la Cuesta-Zuluaga, J., & Escobar, J. S. (2018). Impact of DNA extraction, sample dilution, and reagent contamination on 16S rRNA gene sequencing of human feces. Applied Microbiology and Biotechnology, 102, 403–411.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, J., Coupland, P., Browne, H. P., Lawley, T. D., Francis, S. C., & Parkhill, J. (2016). Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification. BMC Microbiology, 16, 1–17.

    Article  CAS  Google Scholar 

  • Walker, A. W., Martin, J. C., Scott, P., Parkhill, J., Flint, H. J., & Scott, K. P. (2015). 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice. Microbiome, 3, 26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, J., & Jia, H. (2016). Metagenome-wide association studies: Fine-mining the microbiome. Nature Reviews. Microbiology, 14, 508–522.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, S., Xu, Z. Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., et al. (2017). Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome, 5, 27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson, M. R., Suan, D., Duggins, A., Schubert, R. D., Khan, L. M., Sample, H. A., et al. (2017). A novel cause of chronic viral meningoencephalitis: Cache Valley virus. Annals of Neurology, 82, 105–114.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, C., & Iwasaki, W. (2014). MetaMetaDB: A database and analytic system for investigating microbial habitability. PLoS One, 9, e87126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoetendal, E. G., Von Wright, A., Vilpponen-Salmela, T., Ben-Amor, K., Akkermans, A. D. L., & De Vos, W. M. (2002). Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Applied and Environmental Microbiology, 68, 3401–3407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Gessner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hiergeist, A., Gessner, A. (2018). Clinical Implementation of High-Throughput Sequencing. In: Haller, D. (eds) The Gut Microbiome in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-90545-7_19

Download citation

Publish with us

Policies and ethics