Skip to main content

Production of Single Cell Protein (SCP) from Vinasse

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Sustainable development has been a major focus of twenty-first-century research, and the world economy is undergoing profound changes, including the minimization and use of waste as well as the search for new materials to replace traditional sources derived from fossil fuels.

Research on biofuels has made Brazil a pioneer in the production of ethanol and cachaça from sugarcane. After fermentation and distillation of the wort, vinasse is generated as a by-product.

Vinasse is a toxic effluent that poses a potential hazard to surface and groundwater. This chapter discusses the treatment and application of vinasse, food industry, and waste management: biotechnological production and single cell protein (SCP) production.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ABNT (Associação Brasileira de Normas Técnicas) (2004) Resíduos sólidos - classificação – NBR 10.004 : 2004. Rio de Janeiro: ABNT

    Google Scholar 

  • ANA (Agência Nacional de Águas) (2009) Manual de conservação e reuso de água na agroindústria sucroenergética. Brasilia: ANA

    Google Scholar 

  • Anupama, Ravindra P (2000) Value-added food: single cell protein. Research review paper. Biotechnol Adv 18:459–479. https://doi.org/10.1016/S0734-9750(00)00045-8

    Article  PubMed  CAS  Google Scholar 

  • Bacha U, Nasir M, Khalique A, Anjum AA, Jabbar MA (2011) Comparative assessment of various agro-industrial wastes for Saccharomyces cerevisiae biomass production and its quality production: as a single cell protein. J Anim Plant Sci 21(4):844–849

    CAS  Google Scholar 

  • Bermúdez-Savón RC, Hoyos-Hernandez JA, Rodríguez-Perez S (2000) Evaluación de la disminución de la carga contaminante de la vinaza de destilería por tratamiento anaerobio. Rev Int Contam Ambie 16(3):103–107

    Google Scholar 

  • Bernal AP, Santos IFS (2015) Estimativa do potencial energético a partir da digestão anaeróbia da vinhaça na cidade de Araraquara. Rev Bras Energ Renov 4:53–64

    Google Scholar 

  • BNDES (2008) Bioetanol de cana-de-açúcar: energia para o desenvolvimento sustentável / organização BNDES e CGEE. – Rio de Janeiro: BNDES

    Google Scholar 

  • Borzani W, Schmidell W, Lima UA, Aquarone E (2001) Industrial biotechnology Foundations. Blucher, São Paulo

    Google Scholar 

  • Bourdichon F, Casaregola S, Farrokh C, Frisvad JC, Gerds ML, Hammes WP, Harnett J, Huys G, Laulund S, Ouwehand A, Powell IB, Prajapati JB, Seto Y, Ter Schure E, Van Boven A, Vankerckhoven V, Zgoda A, Tuijtelaars S, Hansen EB (2012) Food fermentations: Microorganisms with technological beneficial use. Int J Food Microbiol 154(3):87–97. https://doi.org/10.1016/j.ijfoodmicro.2011.12.030

    Article  PubMed  CAS  Google Scholar 

  • Braga EAS, Aquino MD, Malveira KQ, Neto JC, Duarte Alexandrino CD (2012) Avaliação da biodegradabilidade das águas de lavagem provenientes da etapa de purificação do biodiesel produzido com óleo extraído das vísceras de tilápia. REGA 9(2):35–45

    Article  Google Scholar 

  • Calloway DH (1974) The place of single cell protein in man’s diet. In: Davis P (ed) Single cell protein. Academic Press, New York

    Google Scholar 

  • Campos CR, Mesquita VA, Silva CF, Schwan RF (2014) Efficiency of physico-chemical and biological treatments of vinasse and their influence on indigenous microbiota for disposal into the environment. Waste Manag 34:2016–2046. https://doi.org/10.1016/j.wasman.2014.06.006

    Article  CAS  Google Scholar 

  • CETESB Companhia Ambiental do Estado de São Paulo (2015) NTC P4.231 stillage – criteria and procedures for agricultural soil application, 3rd edn. CETESB, São Paulo

    Google Scholar 

  • Chará JD, Suárez JC (1993) Utilización de vinaza y jugo de caña como fuente energética em patos Pekín alimentados con grano de soya y azolla como fuente proteica. Livestock Res Rural Dev 5(1):1–5

    Google Scholar 

  • Cheftel JC, Cuq JL, Lorient D (1989) Proteínas alimentarias. Zaragoza: Acribia

    Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for production energy and chemicals. Energy Convers Manag 51:1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015

    Article  CAS  Google Scholar 

  • Chia MA, Lombardi AT, Melao MDGG, Parrish CC (2013) Lipid composition of Chlorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations. Aquat Toxicol 128(1):171–182. https://doi.org/10.1016/j.aquatox.2012.12.004

    Article  PubMed  CAS  Google Scholar 

  • Christen P, Domenech F, Páca J, Rvah S (1999) Evaluation of four Candida utilis strains for biomass, acetic acid and ethyl acetate production from ethanol. Bioresour Technol 68(2):193–195. https://doi.org/10.1016/S0960-8524(98)00142-4

    Article  CAS  Google Scholar 

  • Christofoletti CA, Escher JP, Correia JE, Marinho JFU, Fontanetti CS (2013) Sugarcane vinasse: environmental implications of its use. Waste Manag 33:2752–2761. https://doi.org/10.1016/j.wasman.2013.09.005

    Article  PubMed  CAS  Google Scholar 

  • Coca M, Barrocal VM, Lucas S, Gonzáles-Benito G, Gárcia-Cubero MT (2015) Protein production in Spirulina platensis biomass using beet vinasse-supplemented culture media. Food Bioprod Process 94:306–312. https://doi.org/10.1016/j.fbp.2014.03.012

    Article  CAS  Google Scholar 

  • CONAB – Companhia Nacional de Abastecimento (2017). Acompanhamento da safra brasileira de cana-de-açúcar) SAFRA 2017/18 – Brasília: Conab, 2017; 4(2):1–73. Available at: http://www.conab.gov.br/OlalaCMS/uploads/arquivos/. Accessed 30 Aug 2017

  • CONAB – Companhia Nacional de Abstecimento (2016) Acompanhamento da safra brasiliera. Cana-de-Açúcar. 3 - safra 2016/17 (3), dez. ISSN: 2318-7921. Available at: http://www.conab.gov.br. Accessed 19 Aug 2017

  • Corazza RI(1998) Reflexões sobre o papel das políticas ambientais e de ciência e tecnologia na modelagem de opções produtivas mais limpas numa perspectiva evolucionista: um estudo sobre o problema da disposição da vinhaça. Available at: https://www.race.nuca.ie.ufrj.br/eco/trabalhos/mesa3/6.doc. Accessed 13 Oct 2012

  • Cortez L, Magalhães P, Happy J (1992) Principais subprodutos da indústria canavieira e sua valorização. Rev Bras Energ 2(2):1–17

    Google Scholar 

  • Crochet SL (1967) Blackstrap molasses is a major economic factor in catle operation at U.S. Sugar Corp. Sugar J 29(8):40–43

    Google Scholar 

  • Cruz LFLS, Duarte CG, Malheiros TF, Pires EC (2013) Technical, economic and environmental viability analysis of the current vinasse use: ferti-irrigation, concentration and bio-digestion. Rev Bras Cienc Amb 29:111–127

    Google Scholar 

  • Da Costa DA, de Souza CL, Saliba EOS, Carneiro JC (2015) By-products of sugar cane industry in ruminant nutrition. Int J Adv Agric Res 3:1–9

    Google Scholar 

  • De Oliveira DWF, França IWL, Felix AKN, Martins JJL, Giro MEA, Melo VMM, Gonçalves LRB (2013a) Kinetic study of biosurfactant production by Bacillus subtilis LAMI005 grown in clarified cashew apple juice. Colloids Surf B: Biointerfaces 101:34–43. https://doi.org/10.1016/j.colsurfb.2012.06.011

    Article  PubMed  CAS  Google Scholar 

  • De Oliveira MC, Silva DM, Carvalho CAFR, Alves MF, Dias DMB, Martins PC, Bonifácio NP, Souza Júnior MAP (2013b) Effect of including liquid vinasse in the diet of rabbits on growth performance. Rev Bras Zootec 42(4):259–263

    Article  Google Scholar 

  • Diaz M, Semprún A, Gualtieri M (2003) Producción de proteína unicelular a partir de desechos de vinaza. Rev Fac Farm 45(2):23–26

    Google Scholar 

  • Dos Santos RR, Araújo OQF, de Medeiros JF, Chaloub RM (2016) Cultivation of Spirulina maxima in medium supplemented with sugarcane vinasse. Bioresour Biotechnol 204:38–34. https://doi.org/10.1016/j.biortech.2015.12.077

    Article  CAS  Google Scholar 

  • Ferreira L (2009) Biodegradação de vinhaça proveniente do processo industrial de cana- de- açúcar por fungos. Piracicaba, Tese de Doutorado. Escola Superior de Agricultura “Luis de Queiroz”. Universidade de São Paulo

    Google Scholar 

  • Ferreira GM (2012) Concentração de vinhaça a 55 oBrix integrada a usina sucroenergética. Simpósio Internacional e Mostra de Energia Canaviera, 10, Piracicaba, SP, Brasil

    Google Scholar 

  • Ferreira LFR, Aguiar M, Pompeo G, Messias TG, Monteiro RR (2010) Selection of vinasse degrading microorganisms. World J Microbiol Biotechnol 26:1613–1621. https://doi.org/10.1007/s11274-010-0337-3

    Article  CAS  Google Scholar 

  • Freire WJ, Cortez LAB (2000) Vinhaça de cana-de-açúcar. Guaíba: Agriculture

    Google Scholar 

  • Gava AJ (1998) Princípios de Tecnologia de Alimentos. São Paulo: Nobel

    Google Scholar 

  • Gorni M, Berto DA, Moura MP, Camargo JCM (1987) Utilização da vinhaça concentrada na alimentação de suínos em crescimento e terminação. Bol Ind Anim 44(2):271–279

    Google Scholar 

  • Hamstra RS, Schoppink PJ (1998) Process for the fractioning and recovery of valuable compounds from vinasse produced in fermentations. US Patent 5,760,078 A

    Google Scholar 

  • Hassuda S (1989) Impactos da infiltração da vinhaça de cana no Aquífero Bauru. São Paulo, Tese de Mestrado. Instituto de Geociências. Universidade de São Paulo

    Google Scholar 

  • Hawksworth DL, Sutton BC, Ainsworth GC (1983) Dictionary of the fungi, 7th edn. Commonwealth Mycological Institute Kew, Surrey

    Google Scholar 

  • Hidalgo K, Rodríguez B, Valdivié M, Febles, M (2009) Utilización de la vinaza de destilería como aditivo para pollos en ceba. Rev Cubana Cienc Agrícola 43(3):281–284

    Google Scholar 

  • ICIDCA (Instituto Cubano de Pesquisa dos Derivados da Cana-de-açúcar) (2000) Manual de los Derivados de la Caña de Azúcar, 3rd ed. ICIDCA, La Habana

    Google Scholar 

  • Ielchishcheva I, Bozhkov A, Goltvianskiy A, Kurguzova N (2016) The effect of lipid components of corn vinasse on the growth intensity of yeast Rhodosporidium diobovatum IMB Y-5023. Int J Curr Microbiol App Sci 5(10):467–477. https://doi.org/10.20546/ijcmas.2016.510.053

    Article  CAS  Google Scholar 

  • Janke J, Leite AF, Batista K, Silva W, Nikolausz M, Nelle M, Stinner W (2016) Enhancing biogas production from vinasse in sugarcane biorefineries: effects of urea and trace elements supplementation on process performance and stability. Bioresour Technol 217:10–20. https://doi.org/10.1016/j.biortech.2016.01.110

    Article  PubMed  CAS  Google Scholar 

  • Jardim WF, Canela MC (2004) Thematic Dossier v.1: Fundamentals of chemical oxidation in wastewater treatment and remediation of soils. Available at: http://lqa.iqm.unicamp.br/cadernos/caderno1.pdf. Accessed 22 Aug 2015

  • Jong E, Jungmeier G (2015) Biorefinery concepts in comparison to petrochemical refineries. In: Pandey A, Hofer R, Larroche C, Taherzadeh M, Nampoothiri M (eds) Industrial biorefineries and white biotechnology. Elsevier, Amsterdam

    Google Scholar 

  • Kondo K, Saito T, Kajiwara S, Takagi M, Misawa NA (1995) Transformation system for the yeast Candida utilis: use of a modified endogenous ribosomal protein gene as a drug-resistant marker and ribosomal DNA as an integration target for vector DNA. J Bacteriol 177(24):7171–7177. https://doi.org/10.1128/jb.177.24.7171-7177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lâcorte MCF, Bose MLV, Ripoli TCT (1989) Performance of feedlot with ration based on auto hydrolysed sugar cane bagasse, yeast and vinasse. An ESALQ 46(2):433–452

    Google Scholar 

  • Laime EMO, Fernandes PD, Oliveira DCS, Freire EA (2011) Technological possibilities for the disposal of vinasse: a review. R Trop: Ci Agr Biol 5(3):16–29

    Google Scholar 

  • Leme RM, Seabra JEA (2017) Technical-economic assessment of different biogas upgrading routes from vinasse anaerobic digestion in the Brazilian bioethanol industry. Energy 119:754–766. https://doi.org/10.1016/j.energy.2016.11.029

    Article  CAS  Google Scholar 

  • Martelli HL, Souza NO (1978) Obtaining of Candida utilis biomass growing in cane vinasse. Rev Bras Technol 9:157–164

    Google Scholar 

  • Martinez-Hernandez E, Campbell G, Sakhukhan J (2013) Economic value and environmental impact (EVEI) analysis of biorefinery systems. Chem Eng Res Des 9:1418–1426. https://doi.org/10.1016/j.cherd.2013.02.025

    Article  CAS  Google Scholar 

  • Mohsenzadeh A, Zamani A, Taherzadeh MJ (2017) Bioethylene production from ethanol: a review and techno-economical evaluation. Chem Bio Eng Rev 4(2):75–91. https://doi.org/10.1002/cben.201600025

    Article  CAS  Google Scholar 

  • Moraes BS, Zaiat M, Bonomi A (2015) Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: challenges and perspectives. Renew Sust Energ Rev 44:888–903. https://doi.org/10.1016/j.rser.2015.01.023

    Article  CAS  Google Scholar 

  • Moraes BS, Petersen SO, Zaiat M, Sommer SG, Triolo JM (2017) Reduction in greenhouse gas emissions from vinasse through anaerobic digestion. Appl Energy 189:21–30. https://doi.org/10.1016/j.apenergy.2016.12009

    Article  CAS  Google Scholar 

  • Mosier NS, Ladisch MR (2009) Modern biotechnology: connecting innovations in microbiology and biochemistry to engineering fundamentals. Wiley, Hoboken

    Book  Google Scholar 

  • Nair RB, Taherzadeh MJ (2016) Valorization of sugar-to-ethanol process waste vinasse: a novel biorefinery approach using edible ascomycetes filamentous fungi. Bioresour Technol 221:469–476. https://doi.org/10.1016/j.biortech.2016.09.074

    Article  PubMed  CAS  Google Scholar 

  • Nascimento D (2017) Biogás, biometano e o setor sucroenergético. Rev Canavieiros, X, 127:73–75

    Google Scholar 

  • Nasseri AT, Rasoul-Amini S, Morowvat MH, Ghasemi Y (2011) Single cell protein: production and process. Am J Food Technol 6(2):103–116. https://doi.org/10.3923/ajft.2011.103.116

    Article  CAS  Google Scholar 

  • Nitayavardhana S, Khanal SK (2010) Innovative biorefinery concept for sugar-based ethanol industries: production of protein-rich fungal biomass on vinasse as an aquaculture feed ingredient. Bioresour Technol 101:9078–9085. https://doi.org/10.1016/j.biortech.2010.07.048

    Article  CAS  PubMed  Google Scholar 

  • Nitayavardhana S, Issarapayup K, Pavasant P, Khanal SK (2013) Production of protein-rich fungal biomass in an airlift bioreactor using vinasse as substrate. Bioresour Technol 133:301–306. https://doi.org/10.1016/j.biortech.2013.01.073

    Article  PubMed  CAS  Google Scholar 

  • Omar S, Sabry S (1991) Microbial biomass and protein production from whey. J Islamic World Acad Sci 4(170):172

    Google Scholar 

  • Otero-Rambla MA, Almazan-Del Olmo OA, Bello-Gil D, Saura-Laria G, Martinez-Valdivieso JA (2010) Potassium removal from distillery slops by Candida utilis propagation. Proc Int Soc Sugar Cane Technol 27:1–7

    Google Scholar 

  • Paananen H, Lindroos M, Nurmi J, Viljava T (2000) Process for fractioning vinasse. US Patent 6,022,394 A

    Google Scholar 

  • Parajó JC, Santos V, Domínguez H, Vázquez M, Alvarez C (1995) Protein concentrates from yeast cultured in wood hydrolysates. Food Chem 53(2):157–163. https://doi.org/10.1016/0308-8146(95)90782-3

    Article  Google Scholar 

  • Pastore GM, Bicas LJ, Junior MRM (2013) Biotecnologia de Alimentos. Atheneu, São Paulo

    Google Scholar 

  • Pedraza GX (1989) Cultivation of Spirulina maxima for protein supplementation. Livest Res Rural Dev 1(1):1–8

    Google Scholar 

  • Piekarski PRB (1983) Valor nutritivo da vinhaça concentrada e do melaço na alimentação de bovinos em confinamento. Viçosa. 49p. (Mestrado - Universidade Federal de Viçosa)

    Google Scholar 

  • Pires JF, Ferreira GMR, Reis KC, Schwan RF, Silva CF (2016) Mixed yeasts inocula for simultaneous production of SCP and treatment of vinasse to reduce soil and fresh water pollution. J Environ Manag 182:455–463. https://doi.org/10.1016/j.jenvman.2016.08.006

    Article  CAS  Google Scholar 

  • Poveda MMR (2004) Análise econômica e ambiental do processamento da vinhaça com aproveitamento energético. Dissertação de Mestrado, Instituto de Energia e Ambiente, Universidade de São Paulo, São Paulo, Brazil

    Google Scholar 

  • Rasmussen M, Kambam Y, Khanal SK, Pometto AL, van Leeuwen J (Hans) (2007) Thin stillage treatment from dry-grind ethanol plants with fungi. ASABE annual international meeting of American Society of Agricultural and Biological Engineers, June 17–20, Minneapolis, MN, USA

    Google Scholar 

  • Reis CER, Hu B (2017) Vinasse from sugarcane ethanol production: better treatment or better utilization? Front Energy Res 5:1–7. https://doi.org/10.3389/fenrg.2017.00007

    Article  Google Scholar 

  • Robinson T, Singh D, Nigam P (2001) Solid state fermentation: a promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol 55:284–289. https://doi.org/10.1007/s002530000565

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez B, Canela AA, Mora LM, Motta WF, Lezcano P, Euler AC (2011) Mineral composition of torula yeast (Candida utilis), developed from distillery vinasse. Cuban J Agric Sci 45(2):151–153

    Google Scholar 

  • Sarria P, Preston TR (1992) Reemplazo parcial del jugo de caña con vinaza y uso del grano de soya a cambio de torta en dietas de cerdos de engorde. Livestock Res Rural Develop 4(9). http://www.lrrd.org/lrrd4/1/sarria.htm

  • Sartori SB, Ferreira LFR, Messias TG, Souza G, Pompeo GB, Monteiro RTR (2015) Pleurotus biomass production on vinasse and its potential use for aquaculture feed. Mycology 6(1):28–34. https://doi.org/10.1080/21501203.2014.988769

    Article  PubMed  CAS  Google Scholar 

  • Satyawali Y, Balakrishnan M (2008) Wastemater treatment in molasses-based alcohol distilleries for COD and color removal: a review. J Environ Manag 86:481–497. https://doi.org/10.1016/j.jenvman.2006.12.024

    Article  CAS  Google Scholar 

  • Schoeninger V, Coelho SRM, Silochi RMQH (2014) Cadeia produtiva da cachaça. Rev Energ Agr 29(4):292–300. https://doi.org/10.17224/EnergAgric.2014v29n4p292-300

    Article  Google Scholar 

  • SEBRAE (Serviço Brasileiro de Apoio às Micro e Pequenas Empresas) (2005) O novo ciclo da Cana: Estudo sobre a competitividade do sistema agroindustrial da cana-de-açúcar e prospecção de novos empreendimentos. Brasília: IEL/NC, SEBRAE

    Google Scholar 

  • Serzedello A (1986) Biomassas microbianas e algumas de suas aplicações. In: Simpósio Anual da Academia de Ciências do Estado de São Paulo (ACIESP), 11, São Paulo Anais..., São Paulo, 51:273–289

    Google Scholar 

  • Sgarbieri VC (1996) Proteínas em alimentos protéicos; propriedades, degradações, modificações. Sao Paulo: Varela

    Google Scholar 

  • Silva MAS, Griebeler NP, Borges LC (2007) Use of stillage and its impact on soil properties and groundwater. Rev Bras Eng Agric Environ 11(1):108–114

    Article  Google Scholar 

  • Silva CF, Arcuri SL, Campos CR, Vilela DM, Alves JGLF, Schwan RF (2011) Using the residue of spirit production and bio-ethanol for protein production by yeasts. Waste Manag 31:108–114. https://doi.org/10.1016/j.wasman.2010.08.015

    Article  PubMed  CAS  Google Scholar 

  • Silva MAS, Kliemann HJ, De-Campos AB, Madari BE, Borges JD, Gonçalves JM (2013) Effects of vinasse irrigation on effluent ionic concentration in Brazilian Oxisols. Afr J Agric Res 8(45):5664–5672. https://doi.org/10.5897/AJAR12.1441

    Article  CAS  Google Scholar 

  • Silva ALL, Costa JL, Gollo AL, Santos JD, Forneck HR, Biasi LA, Soccol VT, Carvalho JC, Soccol CR (2014) Development of a vinasse culture medium for plant tissue culture. Pak J Bot 46(6):2195–2202

    Google Scholar 

  • SivaRaman H, Pandle AV, Prablune AA (1984) Growth of Candida utilis on distillery effluent. Biotechnol Lett 6(11):759–762. https://doi.org/10.1007/BF00133070

    Article  CAS  Google Scholar 

  • Smith JE (2009) Biotechnology. Cambridge University Press, NewYork

    Book  Google Scholar 

  • SOPRAL (Sociedade de Produtores de Açúcar e Álcool - Brasil) (1986) Avaliação do Vinhoto como Substituto do Óleo Diesel e Outros Usos. Coleção SOPRAL. São Paulo; 10

    Google Scholar 

  • Souza ELL, Macedo IC (2010) Ethanol and bioelectricity: the sugar cane in the future of the energy matrix. Unica, São Paulo

    Google Scholar 

  • Souza RP, Ferrari-Lima AM, Pezoti O, Santana VS, Gimenes ML, Fernandes-Machado NRC (2016) Photodegradation of sugarcane vinasse: evaluation of the effect of vinasse pre-treatment and the crystalline phase of TiO2. Acta Sci Technol 38(2):217–226. https://doi.org/10.4025/actascitechnol.v28i2.27440

    Article  Google Scholar 

  • Srividya AR, Vishnuvarthan VJ, Murugappan M, Dahake PG (2015) Single cell protein: a review. Int J Pharm Res Scholars 2(4):472–485

    Google Scholar 

  • Suman G, Nupur M, Anuradha S, Pradeep B (2015) Single cell protein production: a review. Int J Curr Microbiol App Sci 4(9):251–262

    Google Scholar 

  • Sydney EB (2014) Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source. Bioresour Technol 159:380–386. https://doi.org/10.1016/j.biortech.2014.02.042

    Article  PubMed  CAS  Google Scholar 

  • Tuse D (1984) Single cell protein: current status and future prospects. Crit Rev Food Sci Nutr 19(4):273–325. https://doi.org/10.1080/10408398409527379

    Article  PubMed  CAS  Google Scholar 

  • Utami I, Redjeki S, Astuti DH (2016) Biogas production and removal COD-BOD and TSS from wastewater industrial alcohol (vinasse) by modified UASB bioreactor. MATEC Web of Conferences, 58:1–5, BISSTECH 2015. https://doi.org/10.1051/matecconf/20165801005,

    Article  CAS  Google Scholar 

  • Vadivel R, Minhas PS, Suresh KP, Singh Y, Nageshwar RDVK, Nirmale A (2014) Significance of vinasses waste management in agriculture and environmental quality – review. Afr J Agric Res 9(38):2862–2873. https://doi.org/10.5897/AJAR2014.8819

    Article  Google Scholar 

  • Villas-Boas SG, Esposito E, de Mendonca MM (2003) Bioconversion of apple pomace into a nutritionally enriched substrate by Candida utilis and Pleurotus ostreatus. World J Microbiol Biotechnol 19:461–467. https://doi.org/10.1023/A:1025105506004

    Article  CAS  Google Scholar 

  • Yang HH, Thayer DW, Yang SP (1979) Reduction of endogenous nucleic acid in single cell protein. Appl Environ Microbiol 38(1):143–147

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang PJ, Zhao Z-G, Yu S-J, Guan Y-G, Li D, He X (2012) Using strong acid-cation exchange resin to reduce potassium level in molasses vinasses. Desalination 286:210–216. https://doi.org/10.1016/j.desal.2011.11.024

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Acosta Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martínez, E.A., dos Santos, J.F., Araujo, G.S., de Souza, S.M.A., de Cássia Lacerda Brambilla Rodrigues, R., Canettieri, E.V. (2018). Production of Single Cell Protein (SCP) from Vinasse. In: Kumar, S., Dheeran, P., Taherzadeh, M., Khanal, S. (eds) Fungal Biorefineries. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-90379-8_10

Download citation

Publish with us

Policies and ethics