Skip to main content

Advances in Genetics and Breeding of Salt Tolerance in Soybean

  • Chapter
  • First Online:
Salinity Responses and Tolerance in Plants, Volume 2

Abstract

Salt stress is one of the major abiotic factors affecting crop growth and production. In general, soybean is sensitive to salt stress. The success of soybean improvement for salt tolerance depends on discovery and utilization of genetic variation in the germplasm. In this chapter, advance in salt-tolerant research and breeding was summarized by highlighting the genetic diversity, quantitative trait loci (QTL), identification of the major locus (Glyma03g32900), and improvement of soybean varieties in salt tolerance. The ion exclusion and tissue tolerance mechanisms regulated by this major locus are discussed. In addition, genomic resources and high-throughput phenotyping platforms that can facilitate a better understanding of phenotype-genotype association and formulate genomic-assisted breeding strategies are prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAX:

Cation exchanger

GWAS:

Genome-wide association studies

MAS:

Marker-assisted selection

NGS:

Next-generation sequencing (NGS)

NHX:

Na+/H+ antiporter

QTL:

Quantitative trait loci

QTN:

Quantitative trait nucleotides

SNP:

Single nucleotide polymorphism

References

  • Abel GH (1969) Inheritance of the capacity for chloride inclusion and chloride exclusion by soybeans. Crop Sci 9:697–698

    Article  Google Scholar 

  • Abel GH, MacKenzie AJ (1964) Salt tolerance of soybean varieties (Glycine max L. Merrill) during germination and later growth. Crop Sci 4:157–161

    Article  Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance in plants. Crit. Rev. Plant Sci. 13, 17–42. https://doi.org/10.1080/713608051.

    Article  Google Scholar 

  • Batelli G, Verslues PE, Agius F et al (2007) SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity. Mol Cell Biol 27:7781–7790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthomieu P, Conéjéro G, Nublat A et al (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhandal IS, Malik CP (1988) Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants. Int Rev Cytol 110:205–254

    Article  CAS  Google Scholar 

  • Brown ME, Funk CC (2008) Food security under climate change. Science 319:580–581

    Article  CAS  PubMed  Google Scholar 

  • Chang RZ, Chen YW, Shao GH et al (1994) Effect of salt stress on agronomic characters and chemical quality of seeds in soybean. Soybean Sci 13:101–105

    Google Scholar 

  • Chen H, Cui S, Fu S et al (2008) Identification of quantitative trait loci associated with salt tolerance during seedling growth in soybean (Glycine max L.). Aust J Agric Res 59:1086–1091

    Article  CAS  Google Scholar 

  • Chen H, He H, Yu D (2011a) Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants. Physiol Plant 141(1):11–18

    Article  CAS  PubMed  Google Scholar 

  • Chen HT, Chen X, Yu DY (2011b) Inheritance analysis and mapping quantitative trait loci (QTLs) associated with salt tolerance during seedling growth in soybean. Chin J Oil Crop Sci 33(3):231–234

    CAS  Google Scholar 

  • Chen P, Yan K, Shao H et al (2013) Physiological mechanisms for high salt tolerance in wild soybean (Glycine soja) from Yellow River Delta, China: Photosynthesis, Osmotic Regulation, Ion Flux and antioxidant Capacity. PLoS One 8(12):e83227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Chen X, Gu H et al (2014) GmHKT1;4, a novel soybean gene regulating Na+/K+ ratio in roots enhances salt tolerance in transgenic plants. Plant Growth Regul 73:299–308

    Article  CAS  Google Scholar 

  • Cheng NH, Pittman JK, Zhu JK et al (2004) The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance. J Biol Chem 279:2922–2926

    Article  CAS  PubMed  Google Scholar 

  • Do TD, Chen H, Hien VT et al (2016) Ncl synchronously regulates Na+, K+, and Cl− in soybean and greatly increases the grain yield in saline field conditions. Scientific Reports, 6, https://doi.org/10.1038/srep19147

  • Do TD, Vuong TD, Dunn D, Smothers S, Patil G, Yungbluth DC, Chen P, Scaboo A, Xu D, Carter TE, Nguyen HT, Grover Shannon J (2018) Mapping and confirmation of loci for salt tolerance in a novel soybeangermplasm, Fiskeby III. Theor Appl Genet 131(3):513–524. https://doi.org/10.1007/s00122-017-3015-0.

    Article  CAS  PubMed  Google Scholar 

  • Essa TA (2002) Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. J Agron Crop Sci 188:86–93

    Article  CAS  Google Scholar 

  • FAO A (2000) Extent and causes of salt affected soils in participating countries. Available from http://www.fao.org/ag/agl/agll/spush/topic2.htm

  • Fredj MB, Zhani K, Hannachi C, Mehwachi T (2013) Effect of NaCl priming on seed germination of four coriander cultivars (Coriandrum sativum). Eurasia J Bio Sci 7:11–29

    Google Scholar 

  • Gassmann W, Rubio F, Schroeder JI (1996) Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant J 10:869–952

    Article  CAS  Google Scholar 

  • Gierth M, Mäser P (2007) Potassium transporters in plants – involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett 581:2348–2356

    Article  CAS  PubMed  Google Scholar 

  • Gizlice Z, Carter Jr TE, Burton JW (1994) Genetic base for the North American public soybean cultivars released between 1947 and 1988. Crop Sci 34:1143–1151

    Google Scholar 

  • Guan R, Qu Y, Guo Y et al (2014) Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J 80:937–950

    Article  CAS  PubMed  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom 2014:1–18. https://doi.org/10.1155/2014/701596

    Article  CAS  Google Scholar 

  • Ha BK, Vuong TD, Velusamy V et al (2013) Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean (Glycine soja) PI 483463. Euphytica 193:79–88

    Article  CAS  Google Scholar 

  • Halfter U, Ishitani M, Zhu JK (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci U S A 97:3735–3740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamayun M, Hussain A, Khan SA et al (2015) Kinetin modulates physio-hormonal attributes and isoflavone contents of soybean grown under salinity stress. Front Plant Sci 6:377. https://doi.org/10.3389/fpls

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamwieh A, Xu DH (2008) Conserved salt tolerance quantitative trait locus (QTL) in wild and cultivated soybeans. Breed Sci 58:355–359

    Article  Google Scholar 

  • Hamwieh A, Do DD, Cong H et al (2011) Identification and validation of a major QTL for salt tolerance in soybean. Euphytica 79:451–459

    Article  Google Scholar 

  • Hao D, Chao M, Yin Z et al (2012) Genome-wide association analysis detecting significant single nucleotide polymorphisms for chlorophyll and chlorophyll fluorescence parameters in soybean (Glycine max) landraces. Euphytica 186:919–931

    Article  CAS  Google Scholar 

  • Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31

    Article  CAS  Google Scholar 

  • Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33:552–565

    Article  CAS  PubMed  Google Scholar 

  • He Y, Fu J, Yu C et al (2015) Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean. J Exp Bot 66:6877–6889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseini MK, Powell AA, Bingham IJ (2002) Comparison of the seed germination and early seedling growth of soybean in saline conditions. Seed Sci Res 12:165–172

    Article  CAS  Google Scholar 

  • Hrabak EM, Chan CW, Gribskov M et al (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huertas R, Olías R, Eljakaoui Z et al (2012) Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant Cell Environ 35:1467–1482

    Article  CAS  PubMed  Google Scholar 

  • Hwang EY, Song Q, Jia G et al (2014) A genome-wide association study of seed protein and oil content in soybean. BMC Genomics 15:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishitani M, Liu J, Halfter U et al (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12(9):1667–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol12;15:16. https://doi.org/10.1186/s12896-015-0131-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaspers P, Brosché M, Overmyer K et al (2010) The transcription factor interacting protein RCD1 contains a novel conserved domain. Plant Signal Behav 5:78–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji H, Pardo JM, Batelli G et al (2013) The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286

    Article  CAS  PubMed  Google Scholar 

  • Kan GZ, Zhang W, Yang W et al (2015) Association mapping of soybean seed germination under salt stress. Mol Gen Genomics 290:2147–2162

    Article  CAS  Google Scholar 

  • Kan G, Ning L, Li Y et al (2016) Identification of novel loci for salt stress at the seed germination stage in soybean. Breed Sci 66(4):530–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katiyar-Agarwal S, Zhu J, Kim K et al (2006) The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl Acad Sci U S A 103:18816–18821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee GJ, Carter TE Jr, Villagarcia MR et al (2004) A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theor Appl Genet 109:1610–1619

    Article  CAS  PubMed  Google Scholar 

  • Lee JD, Shannon JG, Vuong TD et al (2009) Inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) accession PI483463. J Hered 100:798–801

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhu JK (1998) A calcium sensor homolog required for plant salt tolerance. Science 280:1943–1945

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Ishitani M, Halfter U et al (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci U S A 97:3730–3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Yu L, Qu Y et al (2016) GmSALT3, which confers improved soybean salt tolerance in the field, increases leaf Cl− exclusion prior to Na+ exclusion but does not improve early vigor under salinity. Front Plant Sci 7:1485

    PubMed  PubMed Central  Google Scholar 

  • Luo GZ, Wang HW, Huang J et al (2005a) A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis. Plant Mol Biol 59:809–820

    Article  CAS  PubMed  Google Scholar 

  • Luo Q, Yu B, Liu Y (2005b) Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. J Plant Physiol 162:1003–1012

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  • Mamidi S, Chikara S, Goos RJ et al (2011) Genome-wide association analysis identifies candidate genes associated with iron deficiency chlorosis in soybean. Plant Genome 4:154–164

    Article  CAS  Google Scholar 

  • Mäser P, Eckelman B, Vaidyanathan R et al (2002) Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett 531:157–161

    Article  PubMed  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat. Rev. Genet16:237–251. https://doi.org/10.1038/nrg3901

    Article  CAS  PubMed  Google Scholar 

  • Møller IS, Gilliham M, Jha D et al (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell 21:2163–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James AJ, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM et al (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109(3):735–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh DH, Lee SY, Bressan RA et al (2010) Intracellular consequences of SOS1 deficiency during salt stress. J Exp Bot 61:1205–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta M, Guo Y, Halfter U et al (2003) A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci U S A 100:11771–11776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papiernik SK, Grieve CM, Lesch SM et al (2005) Effects of salinity, imazethapyr, and chlorimuron application on soybean growth and yield. Commun Soil Sci Plant Anal 36:951–967

    Article  CAS  Google Scholar 

  • Parker MB, Gascho GJ, Gains TP (1983) Chloride toxicity of soybeans grown on Atlantic Coast flatwoods soils. Agron J 75:439–443

    Article  CAS  Google Scholar 

  • Pathan MS, Lee JD, Shannon JG et al (2007) Recent advances in breeding for drought and salt stress tolerance in soybean. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular-breeding toward drought and salt tolerant crops. Springer, Dordrecht, pp 739–773

    Chapter  Google Scholar 

  • Patil G, Do T, Vuong TD et al (2016) Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Sci Rep 6:19199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phang TH, Shao GH, Lam HM (2008) Salt tolerance in soybean. J Integr Plant Biol 50(10):1196–1212

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D, Berger B, Filiberto D et al (2004) Water resources: agricultural and environmental issues. Bioscience 54:909–918

    Article  Google Scholar 

  • Qi X, Li MW, Xie M et al (2014) Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun 5:4340

    Article  CAS  PubMed  Google Scholar 

  • Qiu QS, Guo Y, Dietrich MA et al (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci U S A 99:8436–8441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu QS, Guo Y, Quintero FJ et al (2004) Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J Biol Chem 279:207–215

    Article  CAS  PubMed  Google Scholar 

  • Ren ZH, Gao JP, Li LG et al (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Ren S, Weeda S, Li H et al (2012) Salt tolerance in soybean WF-7 is partially regulated by ABA and ROS signaling and involves withholding toxic Cl− ions from aerial tissues. Plant Cell Rep 31:1527–1533

    Article  CAS  PubMed  Google Scholar 

  • Rosegrant MW, Cline SA (2003) Global food security: challenges and policies. Science 302:1917–1919

    Article  CAS  PubMed  Google Scholar 

  • Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants. Curr. Opin. Biotechnol. 26:115–124.https://doi.org/10.1016/j.copbio.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  • Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663

    Article  CAS  PubMed  Google Scholar 

  • Rus A, Lee BH, Muñoz-Mayor A et al (2004) AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol 136:2500–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci U S A 104:19703–19708

    Article  PubMed  PubMed Central  Google Scholar 

  • Serrano R, Mulet JM, Rios G et al (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot 50:1023–1036

    Article  CAS  Google Scholar 

  • Shao GH, Chang RZ, Chen YW et al (1994) Study on inheritance of salt tolerance in soybean. Acta Agron Sin 20:721–726

    Google Scholar 

  • Shi HZ, Quintero FJ, Pardo JM et al (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Lee BH, Wu SJ et al (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    Article  CAS  PubMed  Google Scholar 

  • Singleton PW, Bohlool BB (1984) Effect of salinity on nodule formation by soybean. Plant Physiol 74:72–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sneller CH (1994) Pedigree analysis of elite soybean cultivars. Crop Sci. 34:1515–1522

    Article  Google Scholar 

  • Stocking MA (2003) Tropical soils and food security: the next 50 years. Science 302:1356–1359

    Article  CAS  PubMed  Google Scholar 

  • Sun YX, Wang D, Bai YL et al (2006) Studies on the overexpression of the soybean GmNHX1 in Lotus corniculatus: the reduced Na+ level is the basis of the increased salt tolerance. Chin Sci Bull 51:1306–1315

    Article  CAS  Google Scholar 

  • Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi, Y (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5: 10342.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sunarpi TH, Motoda J, Kubo M et al (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem parenchyma cells. Plant J 44:928–938

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilman D, Balzer C, Hill J et al (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264

    Article  PubMed  PubMed Central  Google Scholar 

  • Verslues PE, Batelli G, Grillo S et al (2007) Interaction of SOS2 with Nucleoside Diphosphate Kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana. Mol Cell Biol 27:7771–7780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan C, Shao G, Chen Y et al (2002) Relationship between salt tolerance and chemical quality of soybean under salt stress. Chin J Oil Crop Sci 24:67–72

    Google Scholar 

  • Wei P, Wang L, Liu A et al (2016) GmCLC1 confers enhanced salt tolerance through regulating chloride accumulation in soybean. Front Plant Sci 7:1082

    PubMed  PubMed Central  Google Scholar 

  • Wen ZX, Tan R, Yuan J et al (2014) Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC Genomics 15:1

    CAS  Google Scholar 

  • Wen ZX, Boyse JF, Song Q et al (2015) Genomic consequences of selection and genome-wide association mapping in soybean. BMC Genomics 16:671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu SJ, Lei D, Zhu JK (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8:617–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu DH, Do TD, Chen HT et al (2016) Genetic analysis of salt tolerance in soybean. Plant & animal genome conference XXIV, P0983. (https://pag.confex.com/pag/xxiv/webprogram/Paper20285.html)

  • Yang J, Blanchar RW (1993) Differentiating chloride susceptibility in soybean cultivars. Agron J 85:880–885

    Article  CAS  Google Scholar 

  • Yu L, Nie J, Cao C et al (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol 188:762–773

    Article  CAS  PubMed  Google Scholar 

  • Zeng A, Chen P, Korth K et al (2017) Genome-wide association study (GWAS) of salt tolerance in worldwide soybean germplasm lines. Mol Breed 37:1–14. https://doi.org/10.1007/s11032-017-0634-8

    Article  CAS  Google Scholar 

  • Zhang WJ, Niu Y, Bu SH et al (2014) Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage. PLoS One 9(1):e84750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Song Q, Cregan PB et al (2015) Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genomics 16:217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Wang T, Zhang W et al (2011) SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis. New Phytol 189:1122–1134

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10:1181–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This chapter is a joint contribution from the University of Missouri (MU), USA, and Jiangsu Academy of Agricultural Sciences (JAAS), China. We thank JAAS for Huatao Chen visiting scholarship at MU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Chen or Henry T. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, H. et al. (2018). Advances in Genetics and Breeding of Salt Tolerance in Soybean. In: Kumar, V., Wani, S., Suprasanna, P., Tran, LS. (eds) Salinity Responses and Tolerance in Plants, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-90318-7_9

Download citation

Publish with us

Policies and ethics