Skip to main content

Metabolomics for Crop Improvement Against Salinity Stress

  • Chapter
  • First Online:
Salinity Responses and Tolerance in Plants, Volume 2

Abstract

In the post-genomic era, increasing efforts have been done to describe the relationship between genome and phenotype in plants. It has become clear that even a complete understanding of the state of the genes, messages, and proteins in a living system does not reveal its phenotype. Metabolites are the main readouts of gene vs environment interactions and represent the sum of all the levels of regulation in between gene and enzyme. Therefore, metabolome can be considered as the final recipient of biological information flow. Some metabolites have a very short lifetime and are indicators of specific metabolic reaction and of plant status. Indeed, it is well known that many of them are transformed during specific stresses and involved in plant stress response and resistance.

Salinity provides an important example of the effectiveness of metabolic changes in response to stress. In fact, exposure to salinity triggers specific strategies for cell osmotic adjustment and control of ion and water homeostasis to minimize stress damage and to reestablish growth. A ubiquitous mechanism that plants have evolved to adapt to salinity involves sodium sequestration in the vacuole, as a cheap osmoticum, and synthesis and accumulation of compatible compounds, both for osmotic adjustment and oxidative stress protection in the cytosol.

Metabolomics has been utilized for the study of plants in response to salinity stress in order to dissect particular patterns associated with stress tolerance. These studies have proven that certain metabolites are present in case of salt-induced metabolic dysfunction and can act as effectors of osmotic readjustment or antioxidant response. Thus, the presence of particular metabolite patterns can be associated with stress tolerance and could serve as accurate markers for salt-tolerant crop selection in breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMRB:

BioMagResBank

CE:

capillary electrophoresis

EI-MS:

electron impact ionization MS

ELS:

evaporative light scattering

ESI:

electrospray ionization

FT-ICR:

Fourier transform ion cyclotron resonance

GABA:

γ-aminobutyric acid

GB:

glycine betaine

GC:

gas chromatography

HILIC:

hydrophilic interaction liquid chromatography

HPAEC-PAD:

high-performance anion-exchange chromatography with pulsed amperometric detection

HPLC:

high-performance liquid chromatography

IE:

ion-exchange

IT:

ion trap

LC:

liquid chromatography

LT:

linear trap

MMCD:

Madison Metabolomics Consortium Database

MS:

mass spectrometry

m/z:

mass-to-charge ratio

PAs:

polyamines

Q:

quadrupole

RI:

refractive index

SEC:

size-exclusion chromatography

SPE:

solid-phase extraction

TOF:

time of flight

UPLC:

ultra-performance liquid chromatography

References

  • Adamo M, Qiu D, Dick LW Jr, Zeng M, Lee A-H, Cheng K-C (2009) Evaluation of oligosaccharide methods for carbohydrate analysis in a fully human monoclonal antibody and comparison of the results to the monosaccharide composition determination by a novel calculation. J Pharm Biomed Anal 49:181–192

    Article  PubMed  CAS  Google Scholar 

  • Akçay N, Bor M, Karabudak T, Özdemir F, Türkan İ (2012) Contribution of Gamma amino butyric acid (GABA) to salt stress responses of Nicotiana sylvestris CMSII mutant and wild type plants. J Plant Physiol 169:452–458

    Article  PubMed  CAS  Google Scholar 

  • Alonso A, Marsal S, Julià A (2015) Analytical methods in untargeted metabolomics: state of the art in 2015. Front Bioeng Biotechnol 3:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Annunziata MG, Ciarmiello LF, Woodrow P, Maximova E, Fuggi A, Carillo P (2017) Durum wheat roots adapt to salinity remodeling the cellular content of nitrogen metabolites and sucrose. Front Plant Sci 7:2035

    Article  PubMed  PubMed Central  Google Scholar 

  • Arbona V, Manzi M, de Ollas C, Gómez-Cadenas A (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 14:4885–4911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arrivault S, Guenther M, Ivakov A, Feil R, Vosloh D, Van Dongen JT, Sulpice R, Stitt M (2009) Use of reverse-phase liquid chromatography, linked to tandem mass spectrometry, to profile the Calvin cycle and other metabolic intermediates in Arabidopsis rosettes at different carbon dioxide concentrations. Plant J 59:826–839

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Benkeblia N (2014) Metabolomics and postharvest sciences: challenges and perspecitives. Acta Hortic 1047:303–308

    Article  Google Scholar 

  • Bessieres M-A, Gibon Y, Lefeuvre JC, Larher F (1999) A single-step purification for glycine betaine determination in plant extracts by isocratic HPLC. J Agric Food Chem 47:3718–3722

    Article  PubMed  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem 402:231–247

    Article  PubMed  CAS  Google Scholar 

  • Carillo P (2018) GABA Shunt in durum wheat. Front Plant Sci 9:1–9

    Google Scholar 

  • Carillo P, Mastrolonardo G, Nacca F, Fuggi A (2005) Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. Funct Plant Biol 32:209–219

    Article  CAS  PubMed  Google Scholar 

  • Carillo P, Mastrolonardo G, Nacca F, Parisi D, Verlotta A, Fuggi A (2008) Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine. Funct Plant Biol 35:412–426

    Article  CAS  PubMed  Google Scholar 

  • Carillo P, Annunziata MG, Pontecorvo G, Fuggi A, Woodrow P (2011a) Salinity stress and salt tolerance, abiotic stress in plants – mechanisms and adaptations. In: Shanker A (ed) InTech. https://doi.org/10.5772/22331. Available from: https://www.intechopen.com/books/abiotic-stress-in-plants-mechanisms-and-adaptations/salinity-stress-and-salt-tolerance

    Google Scholar 

  • Carillo P, Gibon Y, PrometheusWiki contributors (2011b) Extraction and determination of glycine betaine. PrometheusWiki, http://www.publish.csiro.au/prometheuswiki/tiki-pagehistory.php?page=Extraction and determination of glycine betaine&preview=10. Accessed 9 May 2017

  • Carillo P, Parisi D, Woodrow P, Pontecorvo G, Massaro G, Annunziata MG, Fuggi A, Sulpice R (2011c) Salt-induced accumulation of glycine betaine is inhibited by high light in durum wheat. Funct Plant Biol 38:139–150

    Article  CAS  PubMed  Google Scholar 

  • Carillo P, Feil R, Gibon Y, Satoh-Nagasawa N, Jackson D, Bläsing OE, Stitt M, Lunn JE (2013) A fluorometric assay for trehalose in the picomole range. Plant Methods 9:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Casella IG, Contursi M (2003) Isocratic ion chromatographic determination of underivatized amino acids by electrochemical detection. Anal Chim Acta 478:179–189

    Article  CAS  Google Scholar 

  • Chen THH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Corradini C, Cavazza A, Bignardi C (2012) High-performance anion-exchange chromatography coupled with pulsed electrochemical detection as a powerful tool to evaluate carbohydrates of food interest: principles and applications. Int J Carbohydr Chem 2012:13

    Article  CAS  Google Scholar 

  • Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134

    Article  CAS  PubMed  Google Scholar 

  • Cuin TA, Tian Y, Betts SA, Chalmandrier R, Shabala S (2009) Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. Funct Plant Biol 36:110–119

    Article  CAS  Google Scholar 

  • Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13:14–19

    Article  PubMed  CAS  Google Scholar 

  • Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15:409–417

    Article  PubMed  CAS  Google Scholar 

  • Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763–769

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161

    Article  PubMed  CAS  Google Scholar 

  • Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot 58:2339–2358

    Article  PubMed  CAS  Google Scholar 

  • Fuhrer T, Zamboni N (2015) High-throughput discovery metabolomics. Curr Opin Biotechnol 31:73–78

    Article  PubMed  CAS  Google Scholar 

  • Gavaghan CL, Li JV, Hadfield ST, Hole S, Nicholson JK, Wilson ID, Howe PWA, Stanley PD, Holmes E (2011) Application of NMR-based metabolomics to the investigation of salt stress in maize (Zea mays). Phytochem Anal 22:214–224

    Article  PubMed  CAS  Google Scholar 

  • Giavalisco P, Kohl K, Hummel J, Seiwert B, Willmitzer L (2009) 13C isotope-labeled metabolomes allowing for improved compound annotation and relative quantification in liquid chromatography–mass spectrometry-based metabolomic research. Anal Chem 81:6546–6551

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gong Q, Li P, Ma S, Indu Rupassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839

    Article  PubMed  CAS  Google Scholar 

  • Gorham J, Läuchli A, Leidi EO (2010) Plant responses to salinity. In: Stewart JM, Oosterhuis DM, Heitholt JJ, Mauney JR (eds) Physiology of cotton. Springer, Dordrecht, pp 129–141

    Chapter  Google Scholar 

  • Guo R, Yang Z, Li F, Yan C, Zhong X, Liu Q, Xia X, Li H, Zhao L (2015) Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biol 15:170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Häkkinen MR, Keinänen TA, Vepsäläinen J, Khomutov AR, Alhonen L, Jänne J, Auriola S (2008) Quantitative determination of underivatized polyamines by using isotope dilution RP-LC–ESI-MS/MS. J Pharm Biomed Anal 48:414–421

    Article  PubMed  CAS  Google Scholar 

  • Hall RD (2006) Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytol 169:453–468

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Rodríguez MB, Maldonado JM, Pérez-Vicente R (2006) Role of asparagine and asparagine synthetase genes in sunflower (Helianthus annuus) germination and natural senescence. J Plant Physiol 163:1061–1070

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki Y, Sawada T, Hatayama K, Ohyagi A, Tsukuda Y, Namekawa K, Ito R, Saito K, Nakazawa H (2012) Separation technique for the determination of highly polar metabolites in biological samples. Metabolites 2:496–515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458

    Article  Google Scholar 

  • Jorge TF, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, António C (2016) Mass spectrometry-based plant metabolomics: metabolite responses to abiotic stress. Mass Spectrom Rev 35:620–649

    Article  PubMed  CAS  Google Scholar 

  • Kim JK, Bamba T, Harada K, Fukusaki E, Kobayashi A (2007) Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment*. J Exp Bot 58:415–424

    Article  PubMed  CAS  Google Scholar 

  • Kind T, Wohlgemuth G, Lee Do Y, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81:10038–10048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kishor PBK, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell Environ 37:300–311

    Google Scholar 

  • Kopka J (2006) Current challenges and developments in GC–MS based metabolite profiling technology. J Biotechnol 124:312–322

    Article  PubMed  CAS  Google Scholar 

  • Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmüller E, Dörmann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21:1635–1638

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Khare T (2016) Differential growth and yield responses of salt-tolerant and susceptible rice cultivars to individual (Na+ and Cl−) and additive stress effects of NaCl. Acta Physiol Plant 38:170

    Article  CAS  Google Scholar 

  • Kumar V, Singh A, Mithra SVA, Krishnamurthy SL, Parida SK, Jain S, Tiwari KK, Kumar P, Rao AR, Sharma SK, Khurana JP, Singh NK, Mohapatra T (2015) Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res: Int J Rapid Publ Rep Genes Genomes 22:133–145

    Article  CAS  Google Scholar 

  • Kumari S, Stevens D, Kind T, Denkert C, Fiehn O (2011) Applying in-silico retention index and mass spectra matching for identification of unknown metabolites in accurate mass GC-TOF mass spectrometry. Anal Chem 83:5895–5902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumari A, Das P, Parida AK, Agarwal PK (2015) Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front Plant Sci 6:537

    Article  PubMed  PubMed Central  Google Scholar 

  • Last RL, Jones AD, Shachar-Hill Y (2007) Towards the plant metabolome and beyond. Nat Rev Mol Cell Biol 8:167

    Article  PubMed  CAS  Google Scholar 

  • Lea PJ, Sodek L, Parry MAJ, Shewry PR, Halford NG (2007) Asparagine in plants. Ann Appl Biol 150:1–26

    Article  CAS  Google Scholar 

  • Liu D, Ford KL, Roessner U, Natera S, Cassin AM, Patterson JH, Bacic A (2013) Rice suspension cultured cells are evaluated as a model system to study salt responsive networks in plants using a combined proteomic and metabolomic profiling approach. Proteomics 13:2046–2062

    Article  PubMed  CAS  Google Scholar 

  • Liu J-H, Wang W, Wu H, Gong X, Moriguchi T (2015) Polyamines function in stress tolerance: from synthesis to regulation. Front Plant Sci 6:827

    PubMed  PubMed Central  Google Scholar 

  • Lunn John E, Feil R, Hendriks Janneke HM, Gibon Y, Morcuende R, Osuna D, Scheible W-R, Carillo P, Hajirezaei M-R, Stitt M (2006) Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in <em>Arabidopsis thaliana</em>. Biochem J 397:139–148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo Y, Li W-M, Wang W (2008) Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ Exp Bot 63:378–384

    Article  CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1995) Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J Exp Bot 46:1843–1852

    Article  CAS  Google Scholar 

  • Magnes C, Fauland A, Gander E, Narath S, Ratzer M, Eisenberg T, Madeo F, Pieber T, Sinner F (2014) Polyamines in biological samples: rapid and robust quantification by solid-phase extraction online-coupled to liquid chromatography–tandem mass spectrometry. J Chromatogr A 1331:44–51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant 43:491–500

    Article  CAS  Google Scholar 

  • Martínez Montero C, Rodríguez Dodero MC, Guillén Sánchez DA, Barroso CG (2004) Analysis of low molecular weight carbohydrates in food and beverages: a review. Chromatographia 59:15–30

    Google Scholar 

  • Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazza G, Miniati E (1993) Anthocyanins in fruits, vegetables and grains. CRC Press, London

    Google Scholar 

  • Mechri B, Tekaya M, Cheheb H, Hammami M (2015) Determination of mannitol sorbitol and myo-inositol in olive tree roots and rhizospheric soil by gas chromatography and effect of severe drought conditions on their profiles. J Chromatogr Sci 53:1631–1638

    Article  PubMed  CAS  Google Scholar 

  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274

    Article  PubMed  CAS  Google Scholar 

  • Molina-Rueda J, Garrido-Aranda A, Gallardo F (2015) Glutamate decarboxylase. In: D’ Mello J (ed) Amino acids in higher plants. CAB International, Wallingford, pp 129–141

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Nasir FA, Batarseh M, Abdel-Ghani AH, Jiries A (2010) Free amino acids content in some halophytes under salinity stress in arid environment, Jordan. CLEAN Soil Air Water 38:592–600

    CAS  Google Scholar 

  • Nedjimi B (2014) Effects of salinity on growth, membrane permeability and root hydraulic conductivity in three saltbush species. Biochem Syst Ecol 52:4–13

    Article  CAS  Google Scholar 

  • Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11

    Article  PubMed  Google Scholar 

  • Obata T, Fernie AR (2012) The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci 69:3225–3243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oksman-Caldentey K-M, Inzé D, Orešič M (2004) Connecting genes to metabolites by a systems biology approach. Proc Natl Acad Sci U S A 101:9949–9950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pires MV, Pereira Júnior AA, Medeiros DB, Daloso DM, Pham PA, Barros KA, Engqvist MKM, Florian A, Krahnert I, Maurino VG, Araújo WL, Fernie AR (2016) The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis. Plant Cell Environ 39:1304–1319

    Article  PubMed  CAS  Google Scholar 

  • Quinet M, Ndayiragije A, Lefèvre I, Lambillotte B, Dupont-Gillain CC, Lutts S (2010) Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance. J Exp Bot 61:2719–2733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raessler M (2011) Sample preparation and current applications of liquid chromatography for the determination of non-structural carbohydrates in plants. Trends Anal Chem 30:1833–1843

    Article  CAS  Google Scholar 

  • Ramautar R, Somsen GW, de Jong GJ (2017) CE–MS for metabolomics: developments and applications in the period 2014–2016. Electrophoresis 38:190–202

    Article  PubMed  CAS  Google Scholar 

  • Rana G, Katerji N (2000) Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. Eur J Agron 13:125–153

    Article  Google Scholar 

  • Raven JA (1985) Tansley review no. 2. Regulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol 101:25–77

    Article  CAS  PubMed  Google Scholar 

  • Renault H, El Amrani A, Berger A, Mouille G, Soubigou-Taconnat L, Bouchereau A, Deleu C (2013) γ-aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots. Plant Cell Environ 36:1009–1018

    Article  PubMed  CAS  Google Scholar 

  • Rhodes D, Hanson A (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE (2009) Soluble sugars—metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal Behav 4:388–393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruiz-Matute AI, Hernández-Hernández O, Rodríguez-Sánchez S, Sanz ML, Martínez-Castro I (2011) Derivatization of carbohydrates for GC and GC–MS analyses. J Chromatogr B 879:1226–1240

    Article  CAS  Google Scholar 

  • Sairam R, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  PubMed  CAS  Google Scholar 

  • Sanchez DH, Siahpoosh MR, Roessner U, Udvardi M, Kopka J (2008) Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol Plant 132:209–219

    PubMed  CAS  Google Scholar 

  • Sanchez DH, Pieckenstain FL, Szymanski J, Erban A, Bromke M, Hannah MA, Kraemer U, Kopka J, Udvardi MK (2011) Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics. PLoS One 6:e17094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schuhmacher R, Krska R, Weckwerth W, Goodacre R (2013) Metabolomics and metabolite profiling. Anal Bioanal Chem 405:5003–5004

    Article  PubMed  CAS  Google Scholar 

  • Schwab W (2003) Metabolome diversity: too few genes, too many metabolites? Phytochemistry 62:837–849

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Munns R (2012) Salinity stress: physiological constraints and adaptive mechanisms. CAB, UK

    Google Scholar 

  • Shahaf N, Rogachev I, Heinig U, Meir S, Malitsky S, Battat M, Wyner H, Zheng S, Wehrens R, Aharoni A (2016) The WEIZMASS spectral library for high-confidence metabolite identification. Nat Commun 7:12423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  PubMed  CAS  Google Scholar 

  • Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208

    Article  PubMed  CAS  Google Scholar 

  • Signorelli S, Dans PD, Coitiño EL, Borsani O, Monza J (2015) Connecting proline and γ-aminobutyric acid in stressed plants through non-enzymatic reactions. PLoS One 10:e0115349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stitt M, Fernie AR (2003) From measurements of metabolites to metabolomics: an ‘on the fly’ perspective illustrated by recent studies of carbon–nitrogen interactions. Curr Opin Biotechnol 14:136–144

    Article  PubMed  CAS  Google Scholar 

  • Thiele B, Stein N, Oldiges M, Hofmann D (2012) Direct analysis of underivatized amino acids in plant extracts by LC-MS-MS. In: Alterman MA, Hunziker P (eds) Amino acid analysis: methods and protocols. Humana Press, Totowa, pp 317–328

    Chapter  Google Scholar 

  • Trethewey RN (2004) Metabolite profiling as an aid to metabolic engineering in plants. Curr Opin Plant Biol 7:196–201

    Article  PubMed  CAS  Google Scholar 

  • Troll W, Lindsley J (1955) A photometric method for the determination of proline. J Biol Chem 215:655–660

    PubMed  CAS  Google Scholar 

  • Tuomivaara ST, Yaoi K, O’Neill MA, York WS (2015) Generation and structural validation of a library of diverse xyloglucan-derived oligosaccharides, including an update on xyloglucan nomenclature. Carbohydr Res 402:56–66

    Article  PubMed  CAS  Google Scholar 

  • Villas-Bôas SG, Mas S, Åkesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24:613–646

    Article  PubMed  CAS  Google Scholar 

  • Wakayama M, Hirayama A, Soga T (2015) Capillary electrophoresis-mass spectrometry. In: Bjerrum JT (ed) Metabonomics: methods and protocols. Springer, New York, pp 113–122

    Google Scholar 

  • Waldhier MC, Dettmer K, Gruber MA, Oefner PJ (2010) Comparison of derivatization and chromatographic methods for GC–MS analysis of amino acid enantiomers in physiological samples. J Chromatogr B 878:1103–1112

    Article  CAS  Google Scholar 

  • Wang H, Liu D, Sun J, Zhang A (2005) Asparagine synthetase gene TaASN1 from wheat is up-regulated by salt stress, osmotic stress and ABA. J Plant Physiol 162:81–89

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Gu W, Meng Y, Xie T, Li L, Li J, Wei S (2017) γ-aminobutyric acid imparts partial protection from salt stress injury to maize seedlings by improving photosynthesis and upregulating osmoprotectants and antioxidants. Sci Rep 7:43609

    Article  PubMed  PubMed Central  Google Scholar 

  • Weckwerth W, Wenzel K, Fiehn O (2004) Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics 4:78–83

    Article  PubMed  CAS  Google Scholar 

  • Woodrow P, Pontecorvo G, Fantaccione S, Fuggi A, Kafantaris I, Parisi D, Carillo P (2010) Polymorphism of a new Ty1-copia retrotransposon in durum wheat under salt and light stresses. Theor Appl Genet 121:311–322

    Article  PubMed  CAS  Google Scholar 

  • Woodrow P, Pontecorvo G, Ciarmiello LF, Fuggi A, Carillo P (2011) Ttd1a promoter is involved in DNA–protein binding by salt and light stresses. Mol Biol Rep 38:3787–3794

    Article  PubMed  CAS  Google Scholar 

  • Woodrow P, Pontecorvo G, Ciarmiello LF, Annunziata MG, Fuggi A, Carillo P (2012) Transcription factors and genes in abiotic stress. In: Venkateswarlu B, Shanker AK, Shanker C, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer, Dordrecht, pp 317–357

    Chapter  Google Scholar 

  • Woodrow P, Ciarmiello LF, Annunziata MG, Pacifico S, Iannuzzi F, Mirto A, D'Amelia L, Dell’Aversana E, Piccolella S, Fuggi A, Carillo P (2017) Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. Physiol Plant 159:290–312

    Article  PubMed  CAS  Google Scholar 

  • Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H, Dai F, Wu F, Zhang G (2013) Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS One 8:e55431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  PubMed  CAS  Google Scholar 

  • Yin Y-G, Kobayashi Y, Sanuki A, Kondo S, Fukuda N, Ezura H, Sugaya S, Matsukura C (2010) Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner. J Exp Bot 61:563–574

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  PubMed  CAS  Google Scholar 

  • Zhang JT, Zhang Y, Du YY, Chen SY, Tang HR (2011) Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress. J Proteome Res 10:1904–1914

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Chanon AM, Chattopadhyay N, Dami IE, Blakeslee JJ (2016) Quantification of carbohydrates in grape tissues using capillary zone electrophoresis. Front Plant Sci 7:818

    PubMed  PubMed Central  Google Scholar 

  • Zuther E, Koehl K, Kopka J (2007) Comparative metabolome analysis of the salt response in breeding cultivars of rice. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerance crops. Springer, Berlin, pp 285–315

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petronia Carillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

D’Amelia, L., Dell’Aversana, E., Woodrow, P., Ciarmiello, L.F., Carillo, P. (2018). Metabolomics for Crop Improvement Against Salinity Stress. In: Kumar, V., Wani, S., Suprasanna, P., Tran, LS. (eds) Salinity Responses and Tolerance in Plants, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-90318-7_11

Download citation

Publish with us

Policies and ethics