Skip to main content
  • 1338 Accesses

Abstract

Hemolytic uremic syndrome (HUS) is a triad of thrombocytopenia, microangiopathic hemolysis, and acute kidney injury, within the broader category of thrombotic microangiopathy (TMA). The most common form of HUS in children is due to Shigatoxin-producing E. coli infection, although other forms due to invasive pneumococcal disease, genetic defects in complement regulation, and cobalamin C metabolism also occur. As the many forms of TMA share overlapping clinical features through the common pathomechanism of endothelial cell injury, laboratory investigation is warranted to provide additional diagnostic insight. Secondary forms of TMA also share clinical features with HUS, and although uncommon in children, should be excluded by careful assessment of the patient’s history and laboratory evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moake JL. Thrombotic microangiopathies. N Engl J Med. 2002;347(8):589–600.

    Article  CAS  PubMed  Google Scholar 

  2. Laurence J, et al. Atypical hemolytic uremic syndrome (aHUS): essential aspects of an accurate diagnosis. Clin Adv Hematol Oncol. 2016;14(Suppl 11(11)):2–15.

    PubMed  Google Scholar 

  3. Gilmour MW, et al. Isolation and detection of Shiga toxin-producing Escherichia coli in clinical stool samples using conventional and molecular methods. J Med Microbiol. 2009;58(Pt 7):905–11.

    Article  CAS  PubMed  Google Scholar 

  4. Leszczynska B, et al. Diagnostic value of serological tests against verotoxigenic Escherichia coli in hemolytic uremic syndrome in children. Adv Clin Exp Med. 2015;24(6):1031–6.

    Article  PubMed  Google Scholar 

  5. Gould LH, et al. Recommendations for diagnosis of Shiga toxin--producing Escherichia coli infections by clinical laboratories. MMWR Recomm Rep. 2009;58(RR-12):1–14.

    PubMed  Google Scholar 

  6. Copelovitch L, Kaplan BS. Streptococcus pneumoniae-associated hemolytic uremic syndrome. Pediatr Nephrol. 2008;23(11):1951–6.

    Article  PubMed  Google Scholar 

  7. Loirat C, et al. An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatr Nephrol. 2016;31(1):15–39.

    Article  Google Scholar 

  8. Fakhouri F, et al. Haemolytic uraemic syndrome. Lancet. 2017;390(10095):681–96.

    Article  PubMed  Google Scholar 

  9. Mody RK, et al. Infections in pediatric postdiarrheal hemolytic uremic syndrome: factors associated with identifying Shiga toxin-producing Escherichia coli. Arch Pediatr Adolesc Med. 2012;166(10):902–9.

    Article  PubMed  Google Scholar 

  10. Kielstein JT, et al. Best supportive care and therapeutic plasma exchange with or without eculizumab in Shiga-toxin-producing E coli O104:H4 induced haemolytic-uraemic syndrome: an analysis of the German STEC-HUS registry. Nephrol Dial Transplant. 2012;27(10):3807–15.

    Article  CAS  PubMed  Google Scholar 

  11. Paton JC, Paton AW. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin Microbiol Rev. 1998;11(3):450–79.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Thorpe CM. Shiga toxin-producing Escherichia coli infection. Clin Infect Dis. 2004;38(9):1298–303.

    Article  PubMed  Google Scholar 

  13. Andreoli SP, et al. Hemolytic uremic syndrome: epidemiology, pathophysiology, and therapy. Pediatr Nephrol. 2002;17(4):293–8.

    Article  PubMed  Google Scholar 

  14. Orth D, et al. Shiga toxin activates complement and binds factor H: evidence for an active role of complement in hemolytic uremic syndrome. J Immunol. 2009;182(10):6394–400.

    Article  CAS  PubMed  Google Scholar 

  15. Thurman JM, et al. Alternative pathway of complement in children with diarrhea-associated hemolytic uremic syndrome. Clin J Am Soc Nephrol. 2009;4(12):1920–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Starr M, et al. Hemolytic-uremic syndrome following urinary tract infection with enterohemorrhagic Escherichia coli: case report and review. Clin Infect Dis. 1998;27(2):310–5.

    Article  CAS  PubMed  Google Scholar 

  17. Grisaru S, et al. Associations between hydration status, intravenous fluid administration, and outcomes of patients infected with Shiga toxin-producing Escherichia coli: a systematic review and meta-analysis. JAMA Pediatr. 2017;171(1):68–76.

    Article  PubMed  Google Scholar 

  18. Ardissino G, et al. Early volume expansion and outcomes of hemolytic uremic syndrome. Pediatrics. 2016;137(1):e20152153.

    Article  Google Scholar 

  19. Wong CS, et al. The risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infections. N Engl J Med. 2000;342(26):1930–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ikeda K, et al. Effect of early fosfomycin treatment on prevention of hemolytic uremic syndrome accompanying Escherichia coli O157:H7 infection. Clin Nephrol. 1999;52(6):357–62.

    PubMed  CAS  Google Scholar 

  21. Freedman SB, et al. Shiga toxin-producing Escherichia coli infection, antibiotics, and risk of developing hemolytic uremic syndrome: a meta-analysis. Clin Infect Dis. 2016;62(10):1251–8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Goel R, et al. Platelet transfusions in platelet consumptive disorders are associated with arterial thrombosis and in-hospital mortality. Blood. 2015;125(9):1470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Balestracci A, et al. Impact of platelet transfusions in children with post-diarrheal hemolytic uremic syndrome. Pediatr Nephrol. 2013;28(6):919–25.

    Article  PubMed  Google Scholar 

  24. Menne J, et al. Validation of treatment strategies for enterohaemorrhagic Escherichia coli O104:H4 induced haemolytic uraemic syndrome: case-control study. BMJ. 2012;345:e4565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lapeyraque AL, et al. Eculizumab in severe Shiga-toxin-associated HUS. N Engl J Med. 2011;364(26):2561–3.

    Article  CAS  PubMed  Google Scholar 

  26. Pape L, et al. Eculizumab in typical hemolytic uremic syndrome (HUS) with neurological involvement. Medicine (Baltimore). 2015;94(24):e1000.

    Article  CAS  PubMed  Google Scholar 

  27. Loos S, et al. Intermediate follow-up of pediatric patients with hemolytic uremic syndrome during the 2011 outbreak caused by E. Coli O104:H4. Clin Infect Dis. 2017;64(12):1637–43.

    Article  PubMed  Google Scholar 

  28. Trachtman H, et al. Effect of an oral Shiga toxin-binding agent on diarrhea-associated hemolytic uremic syndrome in children: a randomized controlled trial. JAMA. 2003;290(10):1337–44.

    Article  CAS  PubMed  Google Scholar 

  29. Garg AX, et al. Long-term renal prognosis of diarrhea-associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression. JAMA. 2003;290(10):1360–70.

    Article  CAS  PubMed  Google Scholar 

  30. Weintraub L, et al. Management of streptococcal pneumoniae-induced hemolytic uremic syndrome: a case report. Clin Nephrol Case Stud. 2014;2:9–17.

    PubMed  PubMed Central  Google Scholar 

  31. George JN, Nester CM. Syndromes of thrombotic microangiopathy. N Engl J Med. 2014;371(7):654–66.

    Article  CAS  PubMed  Google Scholar 

  32. Loirat C, Fremeaux-Bacchi V. Atypical hemolytic uremic syndrome. Orphanet J Rare Dis. 2011;6:60.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Licht C, et al. The global aHUS registry: methodology and initial patient characteristics. BMC Nephrol. 2015;16:207.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Noris M, et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol. 2010;5(10):1844–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Delvaeye M, et al. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N Engl J Med. 2009;361(4):345–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fremeaux-Bacchi V, et al. Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood. 2008;112(13):4948–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Goicoechea de Jorge E, et al. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc Natl Acad Sci U S A. 2007;104(1):240–5.

    Article  CAS  PubMed  Google Scholar 

  38. Dragon-Durey MA, et al. Anti-factor H autoantibodies associated with atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2005;16(2):555–63.

    Article  CAS  PubMed  Google Scholar 

  39. Jozsi M, et al. Factor H autoantibodies in atypical hemolytic uremic syndrome correlate with CFHR1/CFHR3 deficiency. Blood. 2008;111(3):1512–4.

    Article  CAS  PubMed  Google Scholar 

  40. Lemaire M, et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013;45(5):531–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bu F, et al. Comprehensive genetic analysis of complement and coagulation genes in atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2014;25(1):55–64.

    Article  CAS  PubMed  Google Scholar 

  42. Nester CM, et al. Atypical aHUS: state of the art. Mol Immunol. 2015;67(1):31–42.

    Article  CAS  PubMed  Google Scholar 

  43. Cataland SR, et al. Biomarkers of the alternative pathway and terminal complement activity at presentation confirms the clinical diagnosis of aHUS and differentiates aHUS from TTP. Blood. 2014;123(24):3733–8.

    Article  CAS  PubMed  Google Scholar 

  44. Reti M, et al. Complement activation in thrombotic thrombocytopenic purpura. J Thromb Haemost. 2012;10(5):791–8.

    Article  CAS  PubMed  Google Scholar 

  45. Noris M, et al. Dynamics of complement activation in aHUS and how to monitor eculizumab therapy. Blood. 2014;124(11):1715–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gavriilaki E, et al. Modified Ham test for atypical hemolytic uremic syndrome. Blood. 2015;125(23):3637–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Michael M, et al. Interventions for haemolytic uraemic syndrome and thrombotic thrombocytopenic purpura. Cochrane Database Syst Rev. 2009;1:CD003595.

    Google Scholar 

  48. Krishnappa V, et al. Atypical hemolytic uremic syndrome: a meta-analysis of case reports confirms the prevalence of genetic mutations and the shift of treatment regimens. Ther Apher Dial. 2018;22(2):178–88.

    Article  PubMed  Google Scholar 

  49. Schwartz J, et al. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the writing Committee of the American Society for apheresis: the seventh special issue. J Clin Apher. 2016;31(3):149–62.

    PubMed  Google Scholar 

  50. Gruppo RA, Rother RP. Eculizumab for congenital atypical hemolytic-uremic syndrome. N Engl J Med. 2009;360(5):544–6.

    Article  CAS  Google Scholar 

  51. Legendre CM, et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med. 2013;368(23):2169–81.

    Article  CAS  PubMed  Google Scholar 

  52. Licht C, et al. Efficacy and safety of eculizumab in atypical hemolytic uremic syndrome from 2-year extensions of phase 2 studies. Kidney Int. 2015;87(5):1061–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Simonetti D, et al. Eculizumab therapy for atypical hemolytic uremic syndrome in pediatric patients: efficacy and safety outcomes from a retrospective study. Haematologica. 2011;96(Suppl 2):165.

    Google Scholar 

  54. Greenbaum LA, et al. Eculizumab is a safe and effective treatment in pediatric patients with atypical hemolytic uremic syndrome. Kidney Int. 2016;89(3):701–11.

    Article  CAS  PubMed  Google Scholar 

  55. Wehling C, et al. Monitoring of complement activation biomarkers and eculizumab in complement-mediated renal disorders. Clin Exp Immunol. 2017;187(2):304–15.

    Article  CAS  PubMed  Google Scholar 

  56. Ardissino G, et al. Discontinuation of eculizumab treatment in atypical hemolytic uremic syndrome: an update. Am J Kidney Dis. 2015;66(1):172–3.

    Article  PubMed  Google Scholar 

  57. Saland J. Liver-kidney transplantation to cure atypical HUS: still an option post-eculizumab? Pediatr Nephrol. 2014;29(3):329–32.

    Article  PubMed  Google Scholar 

  58. Masias C, Vasu S, Cataland SR. None of the above: thrombotic microangiopathy beyond TTP and HUS. Blood. 2017;129(21):2857–63.

    Article  CAS  PubMed  Google Scholar 

  59. Copelovitch L, Kaplan BS. The thrombotic microangiopathies. Pediatr Nephrol. 2008;23(10):1761–7.

    Article  PubMed  Google Scholar 

  60. Barrera-Vargas A, et al. Renal thrombotic Microangiopathy in proliferative lupus nephritis: risk factors and clinical outcomes: a case-control study. J Clin Rheumatol. 2016;22(5):235–40.

    Article  PubMed  Google Scholar 

  61. Torok KS. Pediatric scleroderma: systemic or localized forms. Pediatr Clin N Am. 2012;59(2):381–405.

    Article  Google Scholar 

  62. Guillevin L, et al. Scleroderma renal crisis: a retrospective multicentre study on 91 patients and 427 controls. Rheumatology (Oxford). 2012;51(3):460–7.

    Article  CAS  Google Scholar 

  63. Berman H, et al. Pediatric catastrophic antiphospholipid syndrome: descriptive analysis of 45 patients from the “CAPS registry”. Autoimmun Rev. 2014;13(2):157–62.

    Article  PubMed  Google Scholar 

  64. Mathew RO, Nayer A, Asif A. The endothelium as the common denominator in malignant hypertension and thrombotic microangiopathy. J Am Soc Hypertens. 2016;10(4):352–9.

    Article  CAS  PubMed  Google Scholar 

  65. Timmermans S, et al. Patients with hypertension-associated thrombotic microangiopathy may present with complement abnormalities. Kidney Int. 2017;91(6):1420–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley P. Dixon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, U., Dixon, B.P. (2018). Hemolytic Uremic Syndrome. In: Deep, A., Goldstein, S. (eds) Critical Care Nephrology and Renal Replacement Therapy in Children. Springer, Cham. https://doi.org/10.1007/978-3-319-90281-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90281-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90280-7

  • Online ISBN: 978-3-319-90281-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics